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1. INTRODUCTION  

 

1.1. Goals 

 

Meteorology and climatology are gaining importance as quantitative variables in the design of forthcoming 

and future configurations of the atmosphere, and in its interactions with man, society and the planet. This 

process is encouraged by innovation and digital technology, which have triggered a growing demand for 

representative and consistent meteorological records suitable for consistent statistical processing. This need 

is met also by applying reanalysis or retrospective analysis techniques, which provide historical and near real-

time datasets arranged in regular territorial grids of varying size, obtained from in situ meteorological 

observations.  

 

At market level, we often come across proposals that have little to do with a methodologically correct 

application of retrospective analysis. In Italy, if we rule out most of the world of risk management, this is due 

to the inadequate specific preparation of users, caused by a lack of criticism and supervision by the academic 

world and the institutions. This publication is not a scientific text, but a professional guide to the methods of 

acquisition and use of data obtained through reanalysis, and its intention is to address the issue of reanalysis 

in pragmatic and operational terms.  

 

Other types of dataset, which have less statistical consistency but are still usable in defined and circumscribed 

contexts, are also considered, with the aim of encouraging greater discernment by the user. These datasets 

are grouped under the heading of “pseudo-reanalysis” and should not be confused with solid retrospective 

construction, with which they compete easily with regard to price but not quality. 

 

As the representativeness of meteorological data is always linked to the use made of said data, it should be 

pointed out that this document does not refer to meteorological applications that have an immediate 

operational purpose, the value of which is purely informative. It looks rather at the use of meteorological 

information as part of a more complex process capable of representing a given state of the atmosphere at a 

given time and therefore providing formal, and obviously conventional, content in contractual, insurance, 

legal and other evidence-based contexts3.  

 

In order to better define this framework, it should be noted that the text is based on countless in-house 

experiences in supplying reanalytical services to risk management companies. The part covering regulations 

refers to the indications of the WMO4 and the computations used have been produced by European and 

international research centres.  

 

Among the professional uses of climate reanalysis, the most prominent role is expected to be occupied, in 

time, by the knowledge of the parameters related to global warming. Consequently, it will be destined to a 

wide and transversal audience, before whom it must qualify as a credible and shared reference platform. This 

raises a number of fundamental considerations. One of these is the urgent need to initiate public awareness 

of meteorological and climatological issues, addressing all those who can or must help mitigate global 
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warming. Efforts must be made to enrich the content and multiply the options available, contributing to 

broader inclusion, the sharing of choices and, consequently, increased success. These processes are not 

defined by law. The worlds of culture and communication play a key role in them, being called upon to 

broaden horizons and quickly overcome the narrow confines of meteorology, which has the technical role of 

monitoring and certifying, but its limited representativeness and institutional weaknesses are unable to 

sustain the cogency of decisions that are incisive and sometimes radical.  

 

Reanalysis, which tells us about the past and forecasts the future, aims to fulfil this role using plain language, 

not as some kind of vague oracle, shrouded in a technological haze, but seeking common roots and 

vocabulary, to encourage a reading open to transversal paths and other sensibilities. 

 

Once again, meteorology supplies technology, knowledge and sensitivity to offer a unified and global view of 

the world, in keeping with its tradition since the birth of the IMO5 in 1879, and its subsequent co-option into 

the WMO4, in 1951, as the intergovernmental technical agency of the UN6.  

 

1.2. Concise cultural contextualisation of the vectorial and 

discretized reading of the physical world in the contemporary 

era 
 

Meteorological reanalysis is the tool used to quantify our planet's meteorological and climatic dynamics, 

both overall, as planetary-scale phenomena, and on a more specific and local level. It gives us an organic and 

unitary view of meteorological parameters, distributing them in a uniform grid, suitable for statistical 

applications and sophisticated processing. This method is based on a historicist analysis of the past, as the 

earth’s atmosphere, like the earth itself, evolves over relatively long periods of time, offering the attentive 

observer a view of its trends. Assuming a panoptic continuity between past and future, from a long-term or 

infinite perspective, the temporal parameter ceases to exist7. This paradox, which entraps even Zeno's 

tortoise8, enables the development of historical series and datasets crystallised in regular grids, backed by a 

correct, robust statistical approach that meets our needs. 

 

The future nests in the past and a retrotopic effort9 is to make it easier to read, decipher and compare; in this 

sense, reanalysis is a shared, common, objective field of verification and comparison. At times when 

temperatures are particularly high, it is important to be aware that the knowledge, accessibility and 

transparency of meteorological data, along with its accuracy, should be among the standards for measuring 

the characteristics of an open society that is making slow and gradual human progress10. 

 

Climate is no longer a mere abiotic component of the earth's ecosystem, a factor with which humanity has 

shared thousands of years and to which it has adapted, learning to cope with even its strongest 

manifestations, albeit with varying periods of resilience. Tolerances, thresholds and return periods could be 

exceeded in the years to come, and territorial, environmental, economic and geopolitical balances could be 

shattered.  So the problem is not technical; on the contrary, it must move outside the borders of digital 
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technological hyper-realism and open up to an epistemological paradigm that guarantees understanding, 

sharing and awareness by individuals and society as a whole. 

 

The product of reanalysis represents the matrix for objectively plotting and comparing all the different 

sensibilities and policies. After all, meteorology and climatology are not detached from the historical, cultural, 

social and economic context; they condition it and are, in turn, influenced by it. Growing general attention is 

prompting a multiple reading, which could highlight aspects, contents and perspectives that have so far 

escaped mere technical analysis and might have a positive and essential impact in terms of solutions and 

their effectiveness. Goals of this kind require a strong thematic contextualisation and a historical association 

that penetrates and highlights this sensitivity with other levels of knowledge, in order to allow its cultural 

appropriation and widespread identification. Being the fruit of its own time, there is no lack of convergence 

and affinity with the reanalytical approach, a small sample of which is proposed here in relation to more 

recent years. 

 

A fitting definition for this search for correlation, already ripe for the ensuing digital age, was coined in the 

1970s by Henry Leborit11 who expressed the need to: “... imagine new conceptual grids, new structures that 

capture the essential contribution of biological disciplines as a whole, not separately, but in an integrated form, 

from physics to the human species in the biosphere, in the time of evolution and that of the individual, in the 

gratifying space of a man and of all men, the planet”. It tells us many things: firstly, it presents a holistic vision 

of the grid as a concept; it corresponds to the need for a discretized reading of the world, capable of 

portraying large-scale syntheses and the finer details revealed through small-scale presentation; it converges 

in man and what we know about him.  

 

This is a structuralist reading, used, ahead of its time, by Claude Lévi-Strauss12 , in applying “savage thought” 

to the great eschatologies, and discovering a humanity or, better, a group of individuals, in constant search 

of their place in the universe, and hence a better definition of it. This reading is widely confirmed, discussed 

and developed by Zygmunt Bauman13 in his portrayal of the individual lost in the sea of liquidity and of a 

“modernity” that consists in a constant chase towards an elusive “post-modernity”. 

 

If we wish to mention another convergent starting point in this innovative vision of the physical world, we 

should consider the figurative arts, which encompass this experience in their forms and content, offering an 

effective, open and universal vision, in keeping with their nature. This seed was sown at the end of the 19 th 

century in the refined pictorial research of Georges Seurat who, during the lengthy period between 

Impressionism and Expressionism, used pointillism14 to entrust the abstract power of the pixel to canvas. In 

its dual role as vector and follower, the pixel transcends the progressive shades of colour to lend subjectivity 

and authority to every point of the palette and, with Vincent Van Gogh, to every brushstroke. It is a technique 

which, thanks precisely to its pointillist matrix, can display different views of reality, with more or less detail, 

more or less depth: from the scant brushstrokes of a landscape synthesis, indicating the application of a fairly 

loose mesh for each individual stroke (Figs. 1 and 2), to an analytical breakdown of colours, placed side by 

side in an infinitesimal grid, in which the individual pixels almost vanish in the overall image, only to reappear 

upon closer analysis of the detail (Figs. 3 and 4). 
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Fig. 1 Paul Signac: “Trees in bloom”. Late 20th century 

 

 

Fig. 2 Giuseppe Pellizza da Volpedo: “Washing in the sun”. 1894 

https://www.google.it/url?sa=i&url=https://www.pinterest.it/pin/236298311669240616/&psig=AOvVaw1a4-9_ZEbaJJ57I8etOt_B&ust=1602919111800000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCJjjz4jJuOwCFQAAAAAdAAAAABAJ
https://www.google.it/url?sa=i&url=http://isolamaitrovata.blogspot.com/2018/01/panni-stesi.html&psig=AOvVaw3dW6OsVmMKNgXPjCCMUWiO&ust=1602918830714000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCNjp3P_HuOwCFQAAAAAdAAAAABAI
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Fig. 3 Georges Seurat: “A Sunday Afternoon on the Island of La Grande Jatte”. 1884-86 

 

 

Fig. 4 Georges Seurat: “A Sunday Afternoon on the Island of La Grande Jatte”. 

Detail. 1884-86 

 

Reality materialises and chooses its own forms of representation, the product of a threefold 

contemporaneity: of the contingent expressive and cultural moment, which provides the technique and 

technology used, of recent and remote influences, with their nostalgia and their signs, and, lastly, of the often 

elitist and isolated future vision.  

https://www.google.it/url?sa=i&url=https://www.amodioalessandra.com/single-post/2018/01/29/il-puntinismo&psig=AOvVaw2L8bxOSrlOUTKXffHJ7X8v&ust=1602843911622000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCLD2lvWwtuwCFQAAAAAdAAAAABAP
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These are profound archetypes, proposed here in their most recent or contemporary interpretations, but 

which have distant and remote origins in myth, and in its gradual evolution towards transcendence. 

Nowadays, this arcanum is entrusted, at least in part, to digital technology, and converges in an 

anthropological portrayal of man in a frantic search for his place in the universe, through a process 

characterised not so much by an inescapable temporal constant as by a shift in spaces and contexts, the 

relentless liquidity of which drives us to constantly seek safer islands, defined by the rigour of metadata. 

 

1.3. The Italian scenario 

 

The theme of reanalysis is touched marginally by Italian academia, with a vision limited to applications that 

are often detached from the economic and social context. For their part, the public meteorological 

institutions have insufficient knowledge or at least inadequate operational skill. This is due to the severe flaw 

represented by the absence of a National Meteorological Service and its breakdown into a myriad of local 

offices and agencies, subject to constant and, unfortunately, reiterated attempts at coordination, which are 

pointless when they lack the necessary constitutional seal. A lack of a national meteorological and 

climatological vision thwarts the need for a higher level of knowledge, limits the commitment of offices to 

operational activities and reduces international exchange, presence and coordination.  

 

This structural poverty has opened the doors to commercial incursion by European and non-European 

companies, which present large-scale reanalysis products or products obtained through pseudo-reanalysis. 

 In actual fact, Italy's historical heritage of meteorological data would allow the elaboration and proposal of 

highly refined reanalysis products. Italy has an important meteorological monitoring system made up of 

thousands of in situ stations, both public and non-public, the national network of meteorological radars and 

numerous private lightning monitoring networks;  

 

Moreover, the “Public Information Guidelines” 15 issued by the Agency for Digital Italy of the Presidency of 

the Council of Ministers, as well as the ISTAT “Charter of services”16 provide a very advanced regulatory 

programme in terms of the dissemination of data and the involvement of society in adding value to 

meteorological observations, which should be considered as common public property.  

 

1.4. The international and European scenario 

  

The WMO4 devotes considerable attention to this technology. Its prospects and development are of strategic 

importance as it is required to coordinate a set of observation systems distributed, in different densities and 

with varying types of instrumentation, throughout the world, and used for a variety of purposes which are 

not always climatological. Reanalysis is capable of systematising and adding value to this articulate 

geography. This is because the datasets obtained produce continuous field estimates based on several 

sources of observation, data for all points in space and time, and also make it possible to obtain 

meteorological variables that are not easily or regularly observed. Consequently, it helps increase 

meteorological knowledge in areas which had previously been poorly monitored or monitored in relation to 
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secondary parameters. This said, it most certainly cannot replace a good observation system which, despite 

various weaknesses, is the only way to extract a good reanalytical product. 

 

A key point in the WMO policy is represented by the indication that the datasets obtained have to be 

digitised to standard formats, in order to make as many observations as possible freely available and ensure 

that they are supplemented by an adequate framework of metadata. The WMO also presents a list of 

possible users: 

• independent assessors, 

• members of the public,  

• businesses,  

• society in general,  

• organisations in general, 

• operators in the sector,  

• those with an interest in meteorology and climatology, 

• those with a historical, cultural or statistical interest,  

• those with an interest in global warming.  

 

From an analytical viewpoint, weather and climate datasets obtained from observations cannot be 

considered as absolute values. They should be seen as points of convergence of assumptions related to the 

measurement of a specific atmospheric variable for a determined purpose. As such, the organisation would 

like to point out that there is no one set of universal analyses that can be applied in all cases. As this goal is 

unrealistic and inapplicable, the creation of several specific datasets for different uses, or sets of comparable 

data placed side by side, is recommended. This option should lead to a qualitative improvement of the 

datasets, as it subjects them to examination by users in the various fields of application.  

 

At European level, this is a multifaceted issue: on one hand, the ECMWF17, the independent 

intergovernmental technical body that operates effectively and to the very highest standards in the creation 

of global reanalysis datasets, and on the other, the Presidency of the Commission, responsible for defining 

communication policies. Both have worked together for several years now to develop an open and free data 

network in all sectors, particularly science. This commitment is summarised in the recent EU Directive 

1024/2019 on “open data and the re-use of public sector information”, which offers an enlightened and open 

vision and defines the supporting role to be undertaken by public administrations in their relations with the 

public, the cultural and economic sectors, and society as a whole. 

 

Outside of Europe, and particularly in the English-speaking world, leading institutes and research centres18  

have been pursuing extensive liberalisation for years, both with regard to data obtained from observations 

and reanalysis datasets. 
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2. METEOROLOGICAL REANALYSIS (OR RETROSPECTIVE 

ANALYSIS)  

 

2.1. Origin and outlook 

 

The reanalysis technique was introduced and used to produce the first datasets in the second half of the 

1990s, at a time when computer technology had developed sufficiently to support this type of particularly 

complex and computationally demanding modelling analysis. 

 

The origin of this requirement lay in the scientific community’s need to operate on data that is continuous 

and homogeneous in terms of time and space, overcoming the problem related to the high rate of 

discontinuity associated with traditional measures.  

 

Subsequently, these datasets gained significant weight due to the considerable increase in demand from a 

broad industrial market for more definite, precise and representative meteorology. Advanced digital 

application sectors are now able to maximise the benefits of these products. In risk management, they play a 

strategic role in the assessment of new formulas or types of policy (index, parametric) and in the 

development of financial products like weather derivatives. In smart agriculture, they feed the DSSs19 

extensively used in agronomy and at environmental level. In the activities of Utilities and Land reclamation 

and irrigation authorities, and consequently in energy and the water cycle, they support the design and 

management of networks and resources, as well as procurement and sales strategies. This extends to all 

smart digital applications. 

 

Lastly, with the insurgence of greater social sensitivity towards global warming, the cultural acquisition of 

climatological sensitivity is evolving fully, both among certain social elites and several advanced political 

entities, which have begun to accept this need, while not yet undertaking it sufficiently at practical level.  The 

issue, which seems to have gone beyond scientific standardisation, is still the preserve of descriptive and 

generalist communication, which must be supplemented with a solid quantitative reference structure, to 

define its dimensions and to monitor any mitigating effects that might be implemented. 

 

2.2. Definition 

 

In meteorology, reanalysis or retrospective analysis defines the scientific method used to create a global 

archive of how meteorological parameters change over time. It combines simulation models with real 

observations to generate a synthetic assessment of the state of the atmosphere. The datasets obtained 

populate a regular grid system, the size and characteristics of which depend on the specific application 

required. In logical terms, reanalysis is able to present a more coherent past that we were aware of, and to 

use this knowledge to outline an equally historically reliable future. 
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Reanalysis is not a form of observation, but it generates data based on observations. These observations 

supply the essential informative content of the products and also define their qualitative level or precision. 

The complexities and uncertainties of the observation system, the selection of data, quality control and the 

correction of bias, can be crucial to the outcome of the process. In other words, reanalysis without 

observations is purely a modelling process and the resulting dataset is destined to be affected by all the 

associated weaknesses. 

 

Reanalysis allows the development of datasets of past weather and climatic trends, both near real-time and 

historical, being able to reach as far as the first series of reliable instrumental observations. Consequently, it 

represents a crucial tool for studying climate change and understanding climate mechanisms, and, as such, 

can be considered one of the main developments of recent meteorology and climatology. 

 

 

Fig. 5 Schematic representation of a global grid obtained using the reanalysis process 

 

2.3. Highlights 

 

Starting from an adequate basis of observations, reanalysis is capable of generating meteorological datasets 

with the following characteristics: 

• complete coverage of the earth’s surface, 

• extensive representation of the effective weather and climate trend across the entire geographic area 

covered, even in areas with no in situ monitoring networks, 

• elimination or reduction of discontinuity and a lack of spatial-temporal homogeneity. 
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Another particular feature is the distribution of this data in regular grids of different size, variable on the 

basis of the specific application and accuracy required or possible (Fig. 5). 

Temporal depth also depends on the type of use, in that it has to be functional to the visibility of the 

weather-climate dynamics researched, which could be flattened within an excessively dilated scale. 

 

2.4. Method 

 

From the methodological point of view, reanalysis collects all the data measured by the various 

meteorological monitoring systems (in situ and remote sensors); these are assimilated and processed by a 

numerical atmospheric forecasting model, and may be post-processed using auxiliary co-variables (DEMs20); 

the output of the process comprises the distribution of the data processed in a uniform grid, of variable 

scale, which supplies information for each point of the domain, regardless of the presence, in that point, of a 

meteorological station or a sensor (Fig. 6).   

 

 

Fig. 6 The set of observations is the foundation for creating data grids using reanalysis 

 

Two essential characterising elements are required for correct application: 

• a deep and broad set of observations, which can come from different sources (in situ and remote), 

• an atmospheric forecasting model and relative data assimilation system, the configuration of which is 

defined clearly and does not undergo any change during the process. 

 

Furthermore, in specific professional uses, it is often necessary to follow the reanalysis process with post-

processing operations, such as: 

• downscaling using DEMs20 with a higher spatial resolution than the original dataset,  

• reduction of bias with statistical processes (MOS21), 
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• Correction of “derivative” fields, processed on the basis of the reanalysis modelling component 

alone, without the contribution of observations (e.g., solar radiation, precipitation, etc.). 

 

2.4.1. Observations 

 

As already highlighted, reanalysis is not an observation, but it generates data based on observations, which 

are the foundation of the process. In short, the aim of reanalysis is to consistently portray the observations 

available.  

Being the main feature of this technique, distinguishing it from other meteorological grid production 

processes, observations must undergo in-depth selection. Suggesting the reading of  “Characteristics and 

Representativeness of Precision Meteorology in Italian National Context”3, the meteorological data used in a 

quality reanalysis process must come from adequate monitoring networks and use suitable and robust 

datasets that fall within the following categories:  

 

Characteristics of in situ networks: 

• certified: these networks are subject to formal certification procedures with regard to the type of 

instrumentation installed, the positioning of the survey sites, maintenance procedures and data 

validation, 

• WMO compliant: these are networks belonging to associations, research institutes, NGOs, land 

management companies that comply with the installation, management, maintenance and validation 

procedures defined in the WMO Guidelines,  

• Official: these are networks belonging to governmental bodies and organisations that are legally 

responsible for meteorological-environmental monitoring. The fact that they are official does not 

always guarantee the quality of the network and its correspondence to WMO parameters. 

 

Characteristics of remote sensing networks, used in first assimilation and in post-processing: 

• meteorological radars,  

• lightning detection, 

• geostationary and polar meteorological satellites. 

 

Data characteristics: 

• accessibility: standard formats, 

• continuity: included in a consistent historical series, 

• availability: made available according to open data criteria, 

• usability: can be acquired promptly, 

• impartiality: not attributable to any party, 

• transparency: accompanied by metadata, 

• unambiguousness: they lend themselves to a single interpretation. 

Dataset characteristics: 

• continuity: in time and space, 

• coverage: adequate and consistent, 
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• invariance: over time of the same native dataset, 

• homogeneity: representativeness remains constant in space and time, 

• representativeness: defined. 

 

Despite observing these standards, the assimilation system should also carry out a quality control on the data 

available and eliminate the bias from certain sets of observations (e.g.: satellite), allowing the reanalysis to 

obtain only those observations that are consistent with the real state of the atmosphere. 

 

2.4.2. The atmospheric forecasting model and data assimilation system 

 

In reanalysis, the data assimilation system is coupled with an atmospheric forecasting system; the first 

“forces” the system to be consistent with the observations, while the second aims to obtain physical 

consistency between the variables, keeping them in line with the laws of physics that govern atmospheric 

motion. A sufficiently realistic model is able to extract information from the parameters observed at local 

level and extend them to neighbouring locations, also over the course of time.  

 

It should be noted that, in the case of precipitation, the model does not assimilate the data of the parameter 

but develops it as a “derivative”, applying the resolution of differential equations that describe the 

atmospheric dynamics using other basic variables, such as temperature, humidity, wind and pressure. If 

assessed in a meteorological context, this method determines a significant level of uncertainty in the case of 

convective precipitation, becoming more contained in stratiform events.  

 

In a climatological context, on the other hand, the offsetting of uncertainties on individual events makes this 

type of dataset suitable for use. 

 

The model and basic parameters can also be used to obtain quite accurate estimates of variables that are not 

directly measured by the observation systems, such as solar radiation, cloud cover, ground temperature and 

temperatures at different altitudes.  

 

Every reanalysis dataset uses its own specific model, characterised by the type of grid, its spatial resolution, 

the number of vertical levels, the height of the top level, the formulation of the physical parameters and the 

choice of contour conditions. Complex models usually supply higher performance results.  

 

Fig. 7 shows an example of a data assimilation process coupled with an atmospheric forecasting model. This 

is a 4D-VAR system (referring to the three spatial dimensions plus time), because the assimilation of the 

observations extends beyond the initial instant of the forecast over a continuous window of time. The dashed 

red line represents the trajectory of the forecast that the model would have given without the observations. It 

is “corrected” during the time window of the reanalysis cycle, minimising the differences with respect to the 

observations. The forecast of each cycle (which can last 12 hours, for example) supplies the “first guess” of 

the next cycle. The process generates the meteorological reanalysis for broad time windows. 
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Fig. 7 Simplified schematic representation of a 4D-VAR incremental system. Source: Fujiwaraa et al. - 

Introduction to the SPARC Reanalysis Intercomparison Project (S-RIP) and overview of the reanalysis systems 

 

Another essential element of reanalysis consists in the fact that the configuration of the “forecasting model-

data assimilation system” binomial must be kept constant during the entire process, to ensure spatial-

temporal homogeneity and prevent other spurious results. This is particularly important in the production of 

datasets aimed specifically at the study of climate and its variability, and at the identification of any trends 

linked to climate change.  

 

Despite the application of this method, it should be noted that the portrayal of climate signals is inevitably 

influenced by technological updates and the reorganisation of the global observation system. This has an 

impact on reanalysis and on the other forms of historical analysis of observations. The global weather and 

climate parameters of the atmosphere, also used to estimate climate change indicators, cannot be measured 

directly so it is necessary to use models and statistical analyses that extract information from the 

measurements which, in turn, present the well-known limits in terms of representativeness and uncertainty. 

These issues have been subject to scientific debate, yet reanalysis is currently considered the most reliable 

method; the difficulty that can be encountered in assessing the uncertainty can be mitigated by a 

contemporary comparison with the more traditional climatic datasets obtained from observation alone. 

 

2.4.3. Post-processing 

 
As we are often reminded, every meteorological product should be used for and is functional to its specific 

application and, as such, different users (insurance, energy, hydrology, agriculture, etc.) require dedicated 

post-processing.  Post-processing procedures make it possible to fulfil specific requirements, like the 

following: 

• An increase in spatial (or temporal) resolution of the variables of interest compared to the original 

dataset. This procedure is known as downscaling and can be applied dynamically, via a high 

resolution modelling system that uses the data from the original reanalysis dataset, and as input or 

contour values, or statistically. Processing is often carried out, starting from global or continental 

dataset, to obtain more detailed information at national or regional level. 

• Statistical correction of the output for a further reduction of the bias of “operational” variables. This 

correction can be applied in different ways, one of the most popular techniques being MOS21. 

• Punctual and statistical correction of the meteorological variables produced by “derivative” 

reanalysis, i.e., the modelling component alone, in that the observations are not acquired from the 
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assimilation system. A significant example is precipitation which, in the reanalysis datasets, is 

generated dynamically by the modelling component on the basis of basic variables such as 

temperature, humidity and wind. It is, therefore, necessary to apply this type of correction to 

precipitation in the post-processing phase, using the observations of rain gauges and meteorological 

radars, in order to eliminate the “spurious” drifts of the model. 

 

Sometimes these procedures result in a situation in which the variables are no longer physically consistent, as 

they act selectively on target parameters. The effect achieved leads to an improvement in the result of 

professional and operational uses, supplying data that is more in line with reality. This may not be the case in 

scientific research activities. 

In order to portray a specific case, we are going to use the example of the post-processing technique used by 

Radarmeteo22 in the processing of the precipitation field. The RainGis® algorithm was developed to merge 

the data between rain gauge networks and radar data. This algorithm indicates the precipitation accumulated 

with a spatial resolution of 1 km; the field obtained in this way replaces that processed using the reanalysis 

modelling component alone.  

 

The process envisages the following sequence: 

• acquisition of radar-meteorological data, 

• processing of the precipitation field accumulated from radar data alone (conversion using the 

Marshall-Palmer relationship23), 

• acquisition of data from rain gauges, 

• correction of the radar precipitation field with data from rain gauges (merging). 

 

In this specific case, post-processed merging data performs much better in the portrayal of the real levels of 

precipitation observed. The correction of the radar precipitation field with data from rain gauges allows the 

consistent elimination of drifts and uncertainties derived from radar measuring while maintain information 

relating to the spatial variability of the precipitation. Consequently, we are able to reconstruct a precipitation 

field that adequately portrays localised precipitation both in terms of quality and quantity, an operation 

which is particularly difficult for all other processing techniques (models, satellites, interpolation of stations, 

etc.). 

 

 

 

2.5. The benefits  
 

The application of reanalysis has brought numerous benefits to weather forecasting, for which data 

represents the end of the process, and to countless other applications with meteorological and other 

matrices, for which statistically and digitally structured meteorological information is necessary. Here are the 

main benefits: 

• it uses all the observation sources available, increasing their economic value and expanding the 

vocation for multiple uses, 

• the output presents a high level of consistency with historical measurements, 
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• it carries out a cross validation between various types of sensor, which can also be independent of 

one another, 

• the data is returned in complete, homogeneous, regular grids; for each point throughout the 

territory it is possible to obtain meteorological data that is representative of that area, irrespective of 

the presence of in situ weather station or other sensors, 

• data spatialisation is carried out in compliance with the physical laws that regulate atmospheric 

motion and not using simple isotropic interpolation methods, 

• the resulting datasets are homogeneous in time, being based on a constant modelling setup for the 

entire analysis, 

• in addition to the variables measured, it is also possible to obtain those processed using the 

modelling component only (direct solar radiation, evapotranspiration, leaf wetness, etc.),  

• it supplies a good basic meteorological knowledge of areas with scarce or inadequate network 

coverage, 

• the datasets are immediately usable by operators, analysts and statisticians, even without a 

consistent background in physics, meteorology or climatology, the elements of which are dealt with 

beforehand. 

2.6. The main reanalysis datasets 
 

From the point of view of the geographic domain, reanalysis datasets can usually be grouped into two types: 

• Global, when the computational grid or domain covers the earth’s entire surface, 

• Regional, when the computational grid or domain covers limited portions of the globe. 

 

2.6.1. Global reanalysis 

 

Global reanalysis datasets are usually processed by the world’s main weather centres, the only structures 

which have adequate economic, scientific and computational resources to sustain such complex modelling 

processes. Here we are going to consider the two most important: 

• ECMWF17 - European Union  

• NCEP18 - USA  

 

The processes are distinguished by a grid with a very broad spatial resolution of over 30 km. They perform 

two main functions: 

• supporting the meteorological and climatological analyses of synoptic scale phenomena or 

phenomena which have an impact on large areas of the globe, 

• supplying contour data and initialisation data for regional reanalysis.  

 

Consequently, they can be used to study global warming and synoptic phenomena (hurricanes, non-tropical 

cyclones) in the scientific field and other spheres, such as risk assessment in the insurance sector. 

 



17 
 

 

Fig. 8 Comparison between reconstructions of hurricane Florence at 09 UTC on 15 September 2018 between 

ERA5 (left) and ERA-Interim (right). Thanks to the higher resolution and developments of the model’s physics, 

the ERA5 dataset supplies a more detailed reconstruction of the cyclone's intensity (lower pressure values, 

contours in hPa) and of the precipitation field (higher accumulations in mm, represented by coloured pixels in 

shades of blue). Source: ECMWF 

 

Since the 1990s, both centres have developed global reanalysis datasets, which have gradually been 

upgraded, becoming more advanced; particular reference should be made to the following: 

• NCEP18 / NCAR18 Reanalysis 1 (Kalnay et al., The NCEP/NCAR 40-year reanalysis project, Bull. Amer. 

Meteor. Soc., 77, 437-470, 1996). Developed in partnership between NCEP and NCAR, it uses the pro 

tempore configuration of the analysis/forecasting system to assimilate the data collected from 1948 

to the present day; it presents a spatial resolution of 2.5° (c.a. 250 km) and a time step of six hours. 

• NCEP18 / CFSR24 (Saha, S., et al. The NCEP climate forecast system reanalysis, Bull. Amer. Meteor. Soc., 

91, 1015-1057, 2010). The dataset was created using a high-resolution global model which simulates 

the coupled dynamic of the atmosphere, ocean, land surface, sea and cryosphere; it covers the 

period of time from 1979 to the present day, with a spatial resolution of c.a. 38 km and an hourly 

time step. 

• ERA25-Interim (Berrisford et al., 2011). This is a global atmospheric reanalysis based on the 2006 

version of the IFS (Integrated Forecasting System of ECMWF17); the system includes a four-

dimensional variational analysis (4D-Var) with an analysis window of 12 hours; the spatial resolution 

of the dataset is 80 km and covers the time window from 1979 to 2019 with a step of three hours. 

• ERA255 (Copernicus Climate Change Service, 2017). The new dataset developed by ECMWF17 to 

replace the ERA-Interim reanalysis; it is based on a 4D-Var data assimilation system and uses the 

41r2 cycle of  the IFS26 in operation at ECMWF in 2016; ERA5 benefits from a decade of development 

in model physics, core dynamics and data assimilation relative to ERA-Interim; it also has a 

significantly enhanced horizontal resolution (31 km compared to the 80 km of ERA-Interim) and an 

hourly time step; the dataset covers the period of time from 1979 to the present day (Fig. 8). 
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2.6.2. Regional reanalysis  

 

During the last few decades, the development of global reanalysis datasets has been accompanied by the 

development of reanalysis projects on a regional scale. These respond to the growing need to obtain weather 

and climate datasets for specific geographic areas and represent the applicative tool that has allowed the use 

of reanalysis in various operational spheres, such as insurance, energy, water management and numerous 

smart applications. 

 

The main specific characteristics of these products are that: 

• they have higher spatial-temporal resolutions than global products, 

• they usually require fewer grid points, consequently reducing the computational resources needed 

for processing, which can also be carried out by local authorities, companies and weather centres, 

• they encourage more widespread use of meteorological data in many spheres, 

• compared to global reanalysis, they allow the formulation of a historical background also for all 

those phenomena with a limited spatial-temporal scale (e.g., storms) that global models simulate in a 

parametrised manner or are unable to simulate at all. 

 

In order to process a regional reanalysis, it is necessary to enter the contour conditions of the geographic 

domain considered into the model. The equations that guide the simulation can only be solved if they have 

access to the atmospheric conditions of the neighbouring grid cells; this requires the use, along the 

boundaries of the domain, of the data contained in a global dataset or a regional one which includes the 

area subject to processing within its territory. Obviously, this problem does not occur in global reanalyses as 

their domain is represented by the entire globe. 

 

Different regional reanalysis datasets have been developed at European level, including:  

• UERRA27 Regional Reanalysis for Europe: this dataset was developed using the UERRA-HARMONIE 

modelling system of the ECMWF17. The observations are assimilated using a 3D-VAR system, while 

the contour data is supplied by the ERA2440/ERA-Interim global reanalysis dataset (Fig. 9). The spatial 

resolution of the dataset is 11 km and the period covered runs from 1961 to 2019, with an hourly 

time step. The geographic domain covers the whole European continent, part of North Africa and 

Greenland. 

• COSMO REA286: high-resolution reanalysis developed by the German weather service (DWD29) based 

on the COSMO model of which it also exploits the system used to assimilate observations, with 

additional models for the analysis of snow coverage, sea surface temperatures and soil moisture. The 

contour data is supplied by the ERA25-Interim global reanalysis dataset; it covers the period of time 

from 1995 to 2019, with an hourly time step. The dataset was developed with the geographic domain 

centred on the European continent and it has a spatial resolution of 6 km. 
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Fig. 9 Synthetic diagram of data used for the assimilation of the UERRA-HARMONY system. Source: Copernicus 

Climate Change Programme: User Learning Service Content 
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3. PSEUDO-REANALYSIS 
 

The demand for historical weather and climate data is increasing significantly. This is a variable which, thanks 

partly to digital technology, has acquired strategic importance in industrial policies and in the development 

of new business models. As revealed in the previous chapters, the production of these datasets requires the 

application of a precise scientific methodology known as reanalysis or regression analysis. It is definitely 

possible to build historical and near real-time datasets also using different methods and procedures but 

these products offer lower and sometimes poor quality.   

 

Nevertheless, datasets produced in this way, referred to here as “pseudo-reanalysis”, are sometimes used in 

more general applications. A brief description is given to provide a knowledge of their characteristics and 

allow the assessment of possible fields of use, along with their limits, in that: 

• they can be proposed as reanalysis datasets, 

• the buyer may not be able to tell the difference, 

• very low prices might lead people to prefer them. 

•  

Systematics of pseudo-reanalysis datasets 

• In situ observation datasets 

o In situ meteorological sensor data, as measured, 

o Grids of interpolated in situ meteorological sensor data, without the modelling component. 

• Datasets detached from in situ observation  

o Data from Hindcast or Historical re-forecast, 

o Data from the forecasting model output archive. 

• Indirect and/or remote observation datasets 

o Satellite data, 

o Meteorological radar data. 

 

3.1. In situ observation datasets 
 

3.1.1. In situ meteorological sensor data, as measured, 

 

In situ meteorological sensor data, more commonly known as weather station data, is definitely one of the 

best-known types of data and, therefore, the most sought after. It consists of the value of a given parameter, 

measured precisely at different time intervals (daily, hourly, etc.), and the resulting historical series. Due to 

application in reanalysis as the only form of input, and therefore in the formation of robust datasets, data 

from ground stations presents a number of weaknesses. 

 

Applicability 

• Historical series obtained from station data alone can only be applied in a type of analysis that is 

limited to the area around the station itself, rapidly losing consistency as the area of interest 

expands. 
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Limitations 

• Intrinsic shortcomings: 

o limited, deficient, interrupted time series that cannot be reconstructed in any other way, 

o malfunctions and measuring errors that cannot be checked with data from other sources, 

o availability of few variables, usually temperature and precipitation,  

o replacement and modification of sensors over time. 

• Shortcomings in terms of representativeness: 

o being point data, it is often inadequate to represent a meteorological phenomenon as a whole, 

o representativeness quickly ceases to be precise the further away from the station we move and 

the greater the orographic complexity, and with small scale (temporal) phenomena, 

o discontinuous territorial distribution. 

• Environmental shortcomings: 

o alteration in the surrounding environment (constructions, agriculture, trees, etc.), 

o site relocation, 

o availability on land only. 

 

3.1.2. Grids of interpolated in situ meteorological sensor data, without the modelling component 

 

The formation of grids with the mere interpolation of data gathered by in situ sensors can be used to 

overcome some of the fragilities that characterise the use of data alone.  

 

Applicability 

• Production of regular data grids, with which it is possible: 

o to obtain complete coverage of the territory, 

o to mitigate the lack of homogeneity in the distribution of measurement stations,  

o to make up for the absence of data in certain areas, 

• Production of continuous fields in time, with good historical depth, 

• Low computational costs, 

• Short processing times.  

 

Limitations 

• Availability of datasets limited to standard variables (temperature and precipitation) only; the dataset 

often fails to include other parameters and rarely even includes the variables derived, 

• Isotropic distribution of data; while using auxiliary co-variables to “guide” the interpolation of data 

(e.g., DEM20 for temperature), spatial distribution takes place evenly in various directions, unlike the 

physical processes that guide atmospheric motion, 

• Need for a high density of stations, particularly for precipitation, 

• Reduced representativeness in areas covered by few sensors, 

• Coverage of land only, 

• Time scale often limited to the day, in that the historical data available is often grouped together on 

a daily basis, 
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• Production of grids with a spatial resolution that is not particularly high (10-25 km), 

• Geographic domain limited to national or even regional level, due to the restrictions or differences 

imposed by neighbouring countries and, within Italy, by the different bodies that supply data at local 

level. 

 

3.2. Datasets detached from in situ observation 
 

3.2.1. Hindcast or Historical re-forecast 

 

In oceanography and meteorology, the term Hindcast or Historical re-forecast usually refers to the product 

of a numerical atmospheric simulation model covering a particular historical period during which no 

observation was assimilated. In other words, this is the re-performance of forecast model runs over a 

particular period of the past. The element that makes this product different from reanalysis is the limited 

nature of the observations, which are used only in the model initialisation phase; consequently, their guiding 

role, i.e., their correction and guidance of the process, constantly aligning it to a to that corresponds to the 

station measured, which is as real as possible. 

 

Applicability 

• Better knowledge of the model's climatology, of its behaviour, to provide a more accurate 

interpretation of the forecasts developed in the operational phase, 

• Availability of output data in regular grids that are both spatially and temporally complete, 

• Distribution of information in the grid according to the physical processes that regulate atmospheric 

motion, unlike datasets derived from the mere interpolation of station data. 

 

Limitations 

• Model drifts, meaning the limited adhesion to that actually observed. In the case of phenomena 

characterised by small spatial-temporal scales (e.g. convective precipitation), the model can simulate 

events that may be very different from those that actually occurred. Consistency with reality is poor 

both for daily and long-term data, as no statistical corrections are made, using MOS21 techniques for 

example, 

• Significant computational resources are required for analysis over broad time windows and for high 

spatial resolutions. 

 

3.2.2. Data from the forecasting model output archive 

 

The archive of operational forecasting model output is a similar product to the Hindcast, simply archiving 

forecast output products during their period of operation. 

 

 During that time window, however long it may be, the model setup is subject to changes; these are mainly 

software upgrades to improve the forecasting performance. This is the difference between this product, 
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which has undergone changes that may improve the output of the model, and the Hindcast product, in which 

the model is re-run in a predetermined configuration. 

 

Applicability 

• The generation of the dataset does not require any computational resources in addition to those 

used for the operational forecasting model; in short, the dataset completes itself, albeit over a period 

of years. 

 

Limitations 

• Model drifts: as with Hindcast, the dataset presents a limited consistency with that actually observed,  

• Lack of homogeneity: being the simple archiving of the forecasting output processed during the 

operation of the model, its new setups, such as the spatial resolution of the computational grid, will 

cause a lack of spatial and temporal homogeneity, which might be significant. 

 

3.3. Indirect and/or remote observation datasets 
 

3.3.1. Satellite data 

 

Although satellites have been used for several decades, it is only recently that a considerable increase in the 

number of sensors and orbits has increased their usability. The satellites used in meteorology fall into two 

categories: polar and geostationary. Polar satellites orbit close to the poles and intersect the equator almost 

perpendicularly; their revolution time is about 100 minutes. Geostationary satellites, on the other hand, follow 

a circular orbit over the equator, with a revolution time of 24 hours, so they always “capture” the same 

portion of the globe, moving together with it. Satellite observations use the different channels of the 

electromagnetic spectrum, particularly the infra-red and visible channels, to detect certain meteorological 

variables through indirect measurements. 

 

Applicability 

• Complete coverage, even independent of other weather data sources; this benefit is emphasised in 

parts of the globe where monitoring is limited, such as poorer countries, remote areas, deserts and 

oceans, 

• Acquisition of meteorological variables such as cloud cover, temperature, precipitation and wind 

speed, 

• Acquisition of specific variables which would otherwise be hard to measure, such as cloud top 

temperature, significant information in monitoring severe thunderstorms, or water vapour content, 

• Immediate acquisition of large-scale data. 

 

Limitations 

• Temporal continuity of datasets linked to the frequency of passage of polar satellites; the problem is 

solved to some extent by the increase in their number. Some applications, however, are limited by it,  

• Significantly uncertain measurements, due to the fact that they are indirectly estimated (e.g., light 

scattering for measuring wind speed); for some datasets, such as precipitation, the uncertainty is 
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partially mitigated by correction/calibration by other sensors, such as weather radars or rain gauges; 

this is only possible in areas where these sensors are present, and is also usually achieved with a 

limited number of ground sensors, 

• Partial geographical availability of certain measurements, such as that of wind, which is limited to the 

oceans, 

• Interference from cloud cover, precipitation, particular concentrations of water vapour; these are 

factors which have a negative impact both on measurement uncertainty and the continuity of the 

data; in extreme cases, these conditions can lead to loss of measurement, 

• Medium-low spatial resolution, 10-25 km at most, 

• Limited historical depth: the datasets compiled using the latest technologies go back a maximum of 

five years. Those with a greater historical depth frequently present a lack of temporal homogeneity. 

This is caused by the upgrading of instrumentation over the years and, consequently, the initial use 

of obsolete technologies, 

• Experimental nature; much of the technology used is still being tested and researched. This means 

that there are operational limitations, or limited possibilities for supplying continuous and efficient 

services. 

 

3.3.2. Meteorological radar data 

 

Meteorological radar is used for the real-time monitoring of precipitation systems within its range, which for 

C-band radars is usually around 100-200 km. The operating principle is based on the interaction between the 

electromagnetic radiation emitted by the instrument, characterised by a wavelength compatible with the 

typical size of hydrometeors, and the precipitation systems in the atmosphere (rain, hail, snow). Based on the 

intensity of the signal returned to the aerial and the time between the emission of radiation and its reception, 

the instrument estimates the intensity and geographical position of precipitation phenomena with a good 

degree of accuracy. The WMO4 considers it to be an unconventional instrument, as it is not used in all 

countries. This does not, however, invalidate its usefulness, as it is fundamental in operational applications, 

both to obtain an extremely clear and synthetic real-time picture of storms and to track their imminent 

evolution (now casting). Radar makes a significant contribution also in terms of reanalysis of precipitation 

fields. 

 

Applicability 

• The high spatial and temporal resolution that characterises radar data allows the adequate detection 

of very localised and intense precipitation phenomena that often escape conventional rain gauge 

networks. It is therefore capable of providing a fairly precise picture of the spatial variability of the 

precipitation field which, in the case of convective phenomena, can be very strong and not easily 

portrayed with other measurement systems, 

• It is an important precipitation measurement source in areas without rain gauges.  

 

Limitations 

• Precipitation is estimated on the basis of an indirect measurement (scattering of the radiation 

emitted by the aerial), so there can be a significant amount of uncertainty, 
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• Certain factors, such as the presence of mountains/hills, signal disturbance generated by other 

telecommunications systems and even the intensity of the phenomena themselves can negatively 

influence the uncertainty, the spatial homogeneity of the measurement and the area covered. While 

there are techniques that can mitigate some of these effects, in some cases they can significantly 

impair the quality of the measurement, leading to large underestimates or overestimates. If the 

precipitation systems are particularly intense, they can reduce the radar signal and cause an 

underestimation of phenomena which are “in the shadow” of the sensor's field of view. Hail can lead 

to an overestimate of the measurement of precipitation as it returns a more intense signal to the 

radar aerial than other hydrometeors with the same water content; the exact opposite happens with 

snow,  

• Radar provides the measurement of the precipitation taken at a certain altitude, which may be 

quantitatively different from the precipitation that falls on the ground, 

• Radar networks are usually installed for the purposes of real-time monitoring and civil protection. 

Consequently, the use of radar data for generating precipitation datasets has only been applied 

relatively recently and has limited historical depth. Datasets with greater historical depths often suffer 

from a lack of temporal homogeneity due to the technological upgrade of the sensors, 

• Radar measurements are only available on land and over coastal sea areas, 

• The high cost of purchasing and maintaining radar networks can hinder the spread of this 

technology, which is still somewhat limited to more developed countries,  

• The lack of homogeneity of the instrumentation used from one country to another, and sometimes 

even within the same country, can make it difficult to produce homogeneous datasets. 

 

 



26 
 

4. CASE  STUDY  
 

4.1. Assessment of the performance of certain types of datasets 
 

4.1.1. Precipitation 

 

Among the most important meteorological variables, precipitation definitely occupies a prominent position. 

It should be noted that it is as important as it is difficult to monitor, forecast and reconstruct historically. This 

is due to the marked lack of spatial and temporal homogeneity that often characterises it, and is linked 

directly to the considerable complexity of the physical and microphysical processes associated with its 

generation. 

In an extremely simplified but rather widespread scheme, precipitation can be divided into two large groups: 

• stratiform, 

• convective. 

 

As always, in meteorology there are no such things as closed compartments and there may well be 

convective structures within stratiform precipitation. Convective precipitation is characterised by a large area 

and relative spatial homogeneity, making ex-post analysis fairly easy. Convective precipitation, which is 

sometimes characterised by extreme localisation, is completely different. In particular conditions, the 

precipitation values that can affect a restricted area can be very high, while in adjoining areas there may be 

little or no rainfall at all.  

 

The methodology 

To assess the performance of the various processing methods, the resulting datasets were compared in 

relation to a single case study. The case-study in question was a precipitation event spread over a large part 

of the country, with a prevalence of connective phenomena. The total precipitation (24 hours) on 21 

September 2020 was considered. A total of 64 reference stations30 (Fig. 9) fitted with rain gauges were 

identified and the following data for each one was compared: 

• the data measured against the data extracted from the grid point of the dataset at the control 

station, for datasets consisting of grids, 

• the data measured against the data taken from the nearest in situ station, for the dataset created 

using this method, and therefore not structured in a grid (so only the first of the list of datasets). 

 

 The data from the stations was not used in the creation of the datasets, so it was used to form the 

independent control sample. The quantitative comparison was carried out using some standard metrics 

described later on.  
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Fig. 9 The 64 reference stations used to compare the performance of the various datasets for the 

“precipitation” parameter 

 

Datasets 

The specific datasets used for the case study were the following: 

• Daily rain gauge data from in situ stations, as measured: dataset consisting of the precipitation data 

measured by the stations closest to the 64 reference stations30. In other words, the nearest rain 

gauge station was identified for each of those stations, and the data measured by it was used to 

create the dataset. This dataset “simulates” the method of using the data from the nearest station to 

reconstruct a meteorological event in a particular location. 

• Grid of interpolated rain gauge data from in situ stations: dataset consisting of the interpolation of 

rain gauge data from about 4000 in situ stations30 falling within at least one of the following 

categories: certified, WMO4 compliant and official. These stations do not include the 64 reference 

stations. The data is presented in a regular grid with a resolution of 1 km. 

• Grid of daily rain gauge data from the forecast model output archive: dataset consisting of a regular 

grid with a resolution of 1 km showing the simulated rain gauge values: 

o from the forecasting run of the WRF model31 (initialised with ICON data32 and implemented by 

Radarmeteo22) carried out at 00z hours on 21 September 2020 for the first 12 hours; 

o from the forecasting run of the same model carried out at 12z hours on 21 September 2020 for 

the second 12 hours. 
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• Grid of daily rain gauge data reconstructed using satellite measurements: dataset consisting of daily 

rainfall supplied by the IMERG dataset33 presented in a regular grid with a resolution of 1 km 

(downscaling from the native resolution of 0.1°). 

• Grid of daily rain gauge data reconstructed using radar measurements: dataset consisting of daily 

rainfall obtained from the measurements of the national radar system alone and presented in a grid 

with a spatial resolution of 1 km. 

• Grid of rain gauge data reconstructed by integrating measurements from radar and rain gauge 

(RainGis®): dataset consisting of daily rainfall obtained by integrating station data and radar data, 

created using the RainGis® algorithm and presented in a regular grid with a spatial resolution of 1 

km. This is the method developed and used in operations by Radarmeteo22 for the post-processing 

of the precipitation field within the reanalysis dataset. 

 

Fig. 10 shows the maps reconstructed using grid-based datasets (all of them apart from the first, which is 

based on data from the in situ stations), with the aim of highlighting the fact that the same precipitation 

event is presented in different ways by different methods. 

 

The checks 

In order to quantitatively check the performance of the datasets, the precipitation values measured by the 64 

test set stations30 and the values returned by the different datasets at the grid point closest to the control 

station were compared.  

The analysis was based on the following metrics: 

• Coefficient of determination (R2): this provides an estimate of the dataset's ability to provide values 

close to those measured. The value of R2 varies from 0 to 1: values close to 1 indicate that the 

dataset closely approximates the values measured by the 64 control stations, 

• MAE – Mean Absolute Error. The lower the index value, the more accurately the dataset is able to 

estimate the precipitation that has fallen at test set points, R 

• MSE – Root Mean Square Error. Like the MAE, it provides an estimate of the mean error, emphasising 

the biggest errors thanks to the quadratic term. Low index values indicate good performance by the 

dataset. 

 

A contingency table for four reference precipitation thresholds (1 mm, 5 mm, 10 mm, 20 mm) was created to 

obtain further analysis metrics. The contingency table makes it possible to obtain four combinations between 

the data observed and the data provided by the dataset analysed: 

• Hit: the dataset and the measuring station both show a value equal to or above the reference 

threshold, 

• Correct Negative: the dataset and the measuring station both show a value below the reference 

threshold,  

• Miss: the dataset shows a value below the reference threshold, while the data measured is equal to 

or above that threshold (meaning that the dataset has underestimated the event), 

• False alarm: the dataset shows a value equal to or above the reference threshold, while the data 

measured is below that threshold (meaning that the dataset has overestimated the event). 
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Fig. 10 Daily precipitation on 21/09/2020 reconstructed in the various datasets 
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The statistical metrics obtained from the results of the contingency table, which allowed further analysis of 

the performance of the datasets, are: 

• ETS – Equitable threat score (Gilbert skill score): provides a measurement of the events correctly 

portrayed by the dataset, 

• FAR – False Alarm Rate: provides a measurement of the extent to which the dataset returns 

precipitation estimates above the reference threshold compared to the number of correct estimates, 

• FBIAS – Frequency BIAS: returns an estimate of the dataset's tendency to overestimate (values >1) or 

underestimate events (values between 0 and 1). 

In theory, a dataset without error would be characterised by:  

 ETS=1 

 FAR=0  

 FBIAS=1. 

The results obtained are shown in Fig. 11. 

 

Final considerations 
The dataset obtained from the RainGis® algorithm, developed by Radarmeteo22, which integrates rain gauge 

observations with radar observations, shows the best performance in all the metrics used. Part of this 

performance can be explained by the good correlation between the dataset and the precipitation data 

obtained from radar measurements only: this dataset is part of the input data of the algorithm and, although 

its error is not negligible (RMSE >10 mm), it displays a good coefficient of determination (R2 = 0.63) and 

good results in the contingency table metrics, usually second only to the database obtained from the 

RainGis® algorithm. This is presumably due to the radar's excellent ability to “intercept” the strong spatial 

discontinuity of convective precipitation.  

 

The datasets consisting of data from the closest stations and interpolated data show similar results, tending 

to favour the interpolated data, and are in the middle of the performance ranking of the various datasets.  

 

The dataset consisting of satellite measurements shows significant errors and quite poor performance in the 

metrics obtained from the contingency table.  

 

The dataset consisting of archive modelling data is the dataset with the poorest performance among those 

analysed: the coefficient of determination and the ETS index, which are very close to zero, show that the data 

correlate very poorly with the control measurements. This occurs particularly with convective phenomena, 

which are adequately simulated at macro-scale level but not always accurately identified at local level.  

 

The precipitation field displayed by the different datasets in the province of Turin for the event of 21 

September 2020 is shown by way of example. It is indicated using a chromatic scale (from yellow to purple) 

superimposed with the total daily precipitation values recorded by rain gauges in the area (numeric point 

values). The aim is to compare the different degrees of consistency between the data obtained from the 

different datasets and that actually observed in the event. 
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Fig. 11 Diagrams of the verification metrics of the different datasets. The representative value of the best 

performance is highlighted for each metric. 

Key: 

a. PREC_NEAR: rain gauge data from in situ station, as measured; 

b. PREC_INT: grid of rain gauge data from in situ station, interpolated; 

c. PREC_MOD: grid of rain gauge data from the forecasting model output archive; 

d. PREC_SAT: grid of rain gauge data reconstructed on the basis of satellite measurements; 

e. PREC_RAD: grid of rain gauge data reconstructed on the basis of radar measurements; 

f. PREC_REA: grid of rain gauge data reconstructed by integrating measurements from radar and rain 

gauges (RainGis®). 
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A comparison of the precipitation fields portrayed by the different datasets in the Turin area reveals the 

following: 

• The dataset obtained from interpolated data (Fig. 12) follows the values measured by the rain gauges 

exactly, because it is based on their interpolation. However, the method used is unable to detect 

events or characteristics of the precipitation field that are not detected by the rain gauges: in other 

words, the interpolation method “fills” the space between one rain gauge and another isotropically 

and gradually, starting from the known point values only. This means, for example, that the field 

cannot highlight peaks caused by storm phenomena that are not intercepted by the rain gauges:  

this is a particularly negative point in a case of localised convective precipitation like that analysed. 

• The dataset obtained from modelling data (Fig. 13) shows a very low correlation with the data 

measured on the ground: precipitation peaks are positioned further south than they actually were, 

leading to a general underestimation of precipitation in areas where it rained and an overestimation 

in areas where there was little or no precipitation. 

• The dataset obtained from satellite measurement data (Fig. 14) shows a general and evident 

underestimation of precipitation values, although the spatial correlation is slightly better than the 

model dataset. 

• The dataset obtained from radar data alone (Fig. 15) shows an excellent spatial relationship with rain 

gauges despite the fact that, at least in this case, it presents a general underestimation of the values. 

In contrast to the dataset obtained by interpolating the rain gauge data, it is able to identify localised 

events and local characteristics of the precipitation field. 

• The dataset obtained from the RainGis® algorithm (Fig. 16), which supplements the radar dataset with 

rain gauge data, provides a precipitation field capable of highlighting localised events, thanks to the 

radar measurement, and is quantitatively more accurate, thanks to the calibration carried out by the 

rain gauges. Consequently, it presents an excellent degree of spatial correlation and fewer 

discrepancies in the estimates compared to the data from the in situ stations.  

 

Moving on from ex-post meteorological analysis to climatological analysis, especially over several 

decades, it is logical to expect results that are generally less diversified, although the marked lack of 

spatial homogeneity caused by the convective component could continue to strongly influence the 

degree of uncertainty, especially when using purely modelling datasets such as hindcast or historical re-

forecast, which offer poorer performance. 
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Fig. 12 Map of the precipitation field obtained from the dataset of interpolated data from in situ stations 

superimposed with rain gauge point data. 

 

 

Fig. 13 Map of the precipitation field obtained from the dataset of the output archive of forecasting models 

superimposed with rain gauge point data 
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Fig. 14 Map of the precipitation field obtained from the dataset of satellite data superimposed with rain gauge 

point data 

 

Fig. 15 Map of the precipitation field obtained from the dataset of radar data superimposed with rain gauge 

point data 
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Fig. 16 Map of the precipitation field obtained from the dataset of the integration of radar and rain gauges 

(RainGis®) superimposed with rain gauge point data 

 

4.1.2. Temperature 
 

The spatial variability of temperature, especially in areas where the orography is not particularly complex, is 

definitely less significant than that of precipitation; it must also be said that there are no remote sensing 

systems for this parameter capable of supplying information with as high a spatial resolution as that which 

can be deduced by the meteorological radar for precipitation. 

 

The methodology 

Once again, the performance of a series of different datasets was compared over the 24 hours of 21 

September 2020. A total of 93 reference stations30 (Fig. 17) fitted with a temperature sensor positioned 2 

metres above ground level were identified, and the following data for each one was compared: 

• the data measured against the data extracted from the grid point of the dataset at the control 

station, for datasets consisting of grids, 

• the data measured against the data taken from the nearest in situ station, for the dataset created 

using this method, and therefore not structured in a grid (so only the first of the subsequent list of 

datasets). 

 

 The data from these stations was not used in the creation of the datasets, so it was used to form the 

independent control sample. The quantitative comparison was carried out using some standard metrics 

described later on.  
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The meteorological parameter of reference is the hourly temperature observed during the 24 hours of 21 

September 2020. The case study day was chosen on the basis of the precipitation; characterised by unstable 

and stormy weather conditions, the hourly temperature trends deviate from the curve observed on stable 

and sunny days, and the spatial variance is higher than usual. This situation offers a good test ground for the 

various datasets. 

 

Datasets 

The specific datasets used for the case study were the following: 

• Hourly temperatures at a height of 2 m from the in situ station, as measured: dataset consisting of 

the hourly temperatures measured by the stations closest to the 93 reference stations30. In other 

words, the nearest thermometer station was identified for each of those stations, and the data 

measured by it was used to create the dataset. This dataset simulates the method of using the data 

from the nearest station to reconstruct a meteorological event in a particular location. 

• Grid of hourly temperatures at a height of 2 m, interpolated by in situ stations, without the use of 

regression techniques that consider the auxiliary variable of the altimetry of the territory: dataset 

consisting of the interpolation of temperatures from about 4000 in situ stations30 forming the 

national unified DB, from which the 93 reference stations are excluded. The data is presented in a 

regular grid with a resolution of 1 km.  

 

Fig. 17 The 93 reference stations used to compare the performance of the various datasets for the 

“temperature” parameter 
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• Grid of hourly temperature data at a height of 2 metres interpolated from in situ stations, with the 

application of regression due to the auxiliary variable of altitude: as above. This dataset considers the 

vertical trend of the temperature for the reconstruction of the field through DEM20 with a spatial 

resolution of 1 km. 

• Grid of hourly temperature data from the forecast model output archive: dataset consisting of a 

regular grid with a resolution of 1 km showing the simulated hourly temperature values: 

o from the forecasting run of the WRF model31 (initialised with ICON data32 and implemented by 

Radarmeteo22) carried out at 00z hours on 21 September 2020 for the first 12 hours; 

o from the forecasting run of the WRF model31 (initialised with ICON data32 and implemented by 

Radarmeteo22) carried out at 12z hours on 21 September 2020 for the second 12 hours. 

• Grid of hourly temperature data at a height of 2 metres reconstructed through reanalysis: dataset 

created by reanalysing the hourly temperature data of about 4000 in situ stations30 falling within at 

least one of the following categories: certified, WMO4 compliant and official. These stations do not 

include the 93 reference stations. The data is presented in a regular grid with a resolution of 1 km 

 

 

Fig. 18 Average daily temperatures on 21/09/2020 reconstructed in the various datasets. 

 



38 
 

Fig. 18 shows the maps of the average daily temperatures obtained from the different grid-based datasets 

(all of them apart from the first, which is based on data from the in situ stations). Different methods produce 

different fields, but the differences are less tangible than those that emerged for precipitation; it is evident 

that the interpolation dataset that does not use regression with the auxiliary variable of altitude provides a 

more approximate portrayal of the influence of orography on this field. Fig. 19 shows the regression plots 

that highlight the level of agreement between the datasets and observations. In theory, a dataset with no 

deviations from observations would be associated with a diagram made up of points aligned perfectly with 

the line with equation y=x+0 and R2 = 1.  Greater dispersion of the points in the diagram and a lower R2 

value indicate a poorer performance by the dataset. 

 

The checks 

In order to quantitatively check the performance of the datasets, the hourly temperature values measured by 

the 93 test set stations30 and the values returned by the different datasets at the grid point closest to the 

control station were compared.  The analysis was based on the following metrics (the results obtained are 

shown in Fig. 20): 

• Coefficient of determination (R2): this provides an estimate of the dataset's ability to provide values 

close to those measured. The value of R2 varies from 0 to 1: values close to 1 indicate that the 

dataset closely approximates the values measured by the 93 control stations30, 

• MAE – Mean Absolute Error. The lower the index value, the more accurately the dataset is able to 

estimate the hourly temperature measured at test set points. 

• RMSE – Root Mean Square Error. Like the MAE, it provides an estimate of the mean error, 

emphasising the biggest errors thanks to the quadratic term. Low index values indicate good 

performance by the dataset. 

• BIAS: returns an estimate of the statistical distortion of the dataset. Values above 1 indicate that the 

methodology used has an average tendency to overestimate, values below 1 indicate a tendency to 

underestimate. 

 

Final considerations 
The dataset obtained through reanalysis shows the best performance in the R2 (0.962), MAE (0.8°C) and RMSE 

(1.0°C) metrics. The reanalysis shows a slightly positive bias, indicating a tendency to overestimate the data. 

The datasets consisting of data observed at the stations (T_NEAR, T_INT_NOREG, T_IN_REG) present similar 

results, but with performances that tend to improve as the complexity of the algorithm increases.  

 

The simplest analytical method, using data from the stations which are the closest to the control stations 

only, presents the highest uncertainties (MAE 1.4°C). 

 

The interpolation dataset presents an intermediate uncertainty value (MAE 1.3°C). 

 

The interpolation dataset which applies regression based on altitude presents the slightest error among the 

three (MAE 1.1°C).  
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Fig. 19 Observation/dataset regression plots 

Key: 

a. T_NEAR: hourly temperature data at 2 m, from station; 

b. T_INT_NOREG: grid of hourly temperature data at 2 m, from station interpolated without regression 

with the auxiliary variable of altitude; 

c. T_INT_REG: grid of hourly temperature data at 2 m, from station interpolated with regression with the 

auxiliary variable of altitude; 

d. T_MOD: grid of hourly temperature data at 2 m, from forecasting model archive; 

e. T_REA: grid of hourly temperature data at 2m, from reanalysis. 
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The comparison of the BIAS is of interest: : it shows an underestimate in the first two datasets, and an 

overestimate in the dataset where regression based on altitude was used, showing that this technique 

improves the overall performance of the dataset (smaller errors) but tends to invert the sign of uncertainty 

(from underestimate to overestimate). 

 

The dataset consisting of archive modelling data offers the poorest performance among the datasets 

analysed; the error is significantly higher than in the other datasets (MAE 2.0°C, RMSE 2.5°C) and the BIAS 

also shows an evident tendency to underestimate the values. 

 

  

  

Fig. 20 Diagrams of the verification metrics of the different datasets. The representative value of the best 

performance is highlighted for each metric. Key: see previous figure 

 

4.2. Parametric agricultural insurance policies based on high-resolution 
reanalysis datasets  

 

Italy is undoubtedly one of the first countries in the world to have included risk management among the 

founding elements of its agricultural policy. Since the 1970s, Italian farms have been able to insure their crop 

production with multi-peril policies, protecting themselves against the qualitative and quantitative loss of 

product due to so-called “frequent” adverse weather events, such as hail, strong winds, flash flooding and 

sudden changes in temperature, and to so-called “catastrophic” adverse events, which occur more rarely but 

take on a systemic character, such as frost, drought and floods. The development and expansion of these 
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insurance policies for the protection of income have been facilitated by a series of agricultural support 

measures, with the assignment of public subsidies to partially cover policy costs. The most recent legislation 

on the CAP has made specific provision for the recognition of Community aid, not only for traditional 

insurance policies, but also for index-based policies, which cover the loss of production insured exclusively on 

the basis of the trend of biological or weather-climate indices. 

 

So, in addition to traditional policies covering damage caused by specific meteorological events, it is also 

possible to use policies that indemnify the negative consequences of an adverse climatic trend. An adverse 

climate trend is identified on the basis of the alteration of meteorological parameters, such as rainfall and/or 

temperature in the growing season, to the extent that they deviate significantly from the optimal curve for a 

given crop at a given phenological stage, negatively impacting production, which can also be measured 

using biological indices if necessary. 

 

A very structured approach to these issues is naturally linked to risk management in general, as it requires 

long-term assessments and evaluations, even in a historical and climatic context of extreme events and 

consequent fluidity of territorial, environmental and economic balances. This need for in-depth analysis 

initiated extensive debate and the establishment of dedicated think tanks involving the scientific community, 

weather providers, analysts, statisticians and agronomists in the analysis of new crop models, along with the 

simulation and estimation of production yields in relation to meteorological parameters and associated 

variables. The aim of these activities is to modernise the range of insurance products available in the light of 

new scientific evidence. 

 

The work teams identified the datasets best suited to achieving these aims, both in operational and 

commercial terms, as follows: 

• historical meteorological data (10 or more years), to give the crop model the necessary input to 

simulate past crop performance and, so, identify the indices most closely related to the development 

of the damages and obtain an adequate calibration of the policy mechanisms, 

• near real-time meteorological data for the constant and daily monitoring of the indices and 

parameters, in order to supply the policy holder with regular reports on the performance of their 

policy. 

 

Another significant choice was to use high-resolution reanalysis datasets, to meet two specific needs: 

• the processing of indices that are as accurate as possible, offering a good representation of an 

agricultural sector made up of a large number of small farms, extensive spatial variety of crops and 

considerable micro-climatic variability, like that which exists in Italy, 

• the accurate estimation of reference weather parameters (temperature, rainfall, etc.), in order to 

achieve a crop damage simulation which comes as close as possible to the reality found in the field. 

This can only be achieved using datasets based on a consistent use of observations, as is the case of 

reanalysis. 

 

The use of low-resolution databases would lead to the identification of general indices which would be 

unable to appreciate the extreme variability of the matrix and end up becoming detached from the punctual 
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crop performance observed in the field. A similar approach would present an average large-scale trend, 

providing a damage estimate that could actually be an overestimate for certain crops and an underestimate 

for others.   

 

High-resolution meteorological data grids on the other hand make it possible to associate a “virtual weather 

station” with each individual crop area. The area to be insured is georeferenced when taking out the policy. 

Then the system assigns the nearest node of the grid and the relative flow of historical and near real-time 

meteorological data. The high resolution of the dataset, which can reach 1 km2, allows the assignment to the 

insured areas of points which are a maximum of 500 metres away. This ensures provision of adequately 

representative meteorological data, accepted as conventional.  

 

The expected result, on which the very concept of an index-based policy is founded, is that even crop damage 

simulated by the crop model on the basis of the input supplied by the “virtual weather station” presents a 

picture in line with what actually takes place in the field. This results in completely automated operation of 

the policy, which can be summarised as follows: 

• assimilation of the daily meteorological data and update of indices, 

• verification that the thresholds of the indices are not exceeded, 

• if a threshold is exceeded, the model calculates a percentage of damage to the area insured, based 

on the intensity of the deviation of the index from the normal situation, 

• the accumulated damage is updated on a daily basis, 

• when the crop is harvested, the accumulated damage is converted into economic damage and the 

insurance company indemnifies the policy holder automatically. 

 

This is why index-based policies are of such considerable interest. On one hand, the completely automated 

process guarantees a reduction of insurance costs and, on the other, it allows the constant and transparent 

update of the policy, guaranteeing immediate payment, with no intermediaries, as soon as the trigger 

parameters are exceeded.  

There is absolutely no doubt that index-based policies are going to take on an increasingly important role in 

risk management in the years to come, now that technology has reached levels capable of adequately 

supporting their development. The first experiments in the agriculture sector are showing encouraging 

results in this direction (Fig. 21). 
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Fig. 21 Relative trend in economic losses due to natural events for the four groups of events (reference year 

1980) at global level. The lines represent the linear regression of the individual curves. The trends are 

statistically significant for each group of events, but it is clear that weather and climate events (Meteorological 

events, Hydrological events and Climatological events) increase faster than geophysical events (earthquakes, 

volcanic eruptions, etc.). Source: Munich Re NatCatSERVICE. 
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5. NOTES 

 

1 Massimo Crespi, former Inspector of the State Forestry Corps, Director of the Experimental Centre for 

Avalanches and Hydrogeological Defence of Arabba (Veneto Region), Director of the Meteorological Centre 

of Teolo (ARPA Veneto), Director of Research and Communication of ARPA Veneto, Director General of 

Planning and Programming of the Veneto Region, National Delegate at the UN WMO (World Meteorological 

Organization), Director of the Environmental and Hydrological Monitoring Centre of the European Union in 

Asunción (Paraguay); currently CEO of Radarmeteo. 

2 Gianluca Ferrari: Expert in meteorology applied to risk assessment, Manager of the insurance and 

agricultural sector of Radarmeteo.  

3   Massimo Crespi: “Characteristics and Representativeness of Precision Meteorology in the Italian National 

Context” - “Quaderni di meteorologia aperta” n. 1-2020  www.radarmeteo.com  . 

4 WMO: World Meteorological Organization, UN Technical Agency tasked with global coordination of 

meteorology, climatology and operational hydrology. 

5 IMO (International Meteorological Organization). 

6 UN (United Nations). 

7 Olga Tokarczuk “Flights” 2007. 

8 Zeno of Elea “The paradox of Achilles and the tortoise” 5th century b.c.. 

9 Zygmunt Bauman “Retrotopia” 2017. 

10 Karl Popper “The Open Society and its Enemies” 1945. 

11 Henry Leborit “La nouvelle grille” 1974. 

12 Claude Lévi-Strauss “The Savage Mind” 1962. 

13 Zygmunt Bauman “Liquid Modernity” 2000. 

14 Félix Fénéon – 1870. 

15 Presidency of the Council of Ministers - Agency for Digital Italy “Public data - Public Information 

Guidelines” 2018. 

16 ISTAT (Italian National Institute of Statistics) “Charter of Services” 2013. 

17 ECMWF (European Center for Medium-range Weather Forecast): Independent intergovernmental 

organisation. 

18 NCEP (National Centers for Environmental Prediction) of NWS (National Weather Service) USA; NCAR 

(National Center for Atmospheric Research)  USA; JMA (Japan Meteorological Agency) JAP; BOM (Bureau of 

Meteorology – Australian Government) AUS. 

19DSS (Decision Support System). 

20DEM (Digital Elevation Model). 

21 MOS (Model Output Statistics). 

22 Radarmeteo Srl (www.radarmeteo.com). 

23 Marshall-Palmer 1948: this is the relationship used to convert reflectivity into precipitation intensity.  

24 CFSR (Climate Forecast System Reanalysis). 

25ERA (ECMWF Re-Analysis). 

26 IFS (Integrated Forecasting System): operational forecasting model used by ECMWF17. 

27 UERRA (Uncertainties Ensembles Regional Re-Analysis). 

28 COSMO REA (COnsortium for Small scale Modelling  RE-Analysis). 

http://www.radarmeteo.com/
http://www.radarmeteo.com/
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29DWD (Deutscher WetterDienst) the German Meteorological Service. 

30The weather stations used in the case studies are operated by the following bodies: the Italian Air Force, the 

regional environmental agencies of Veneto, Piedmont, Lombardy, Emilia-Romagna and Calabria, the Regional 

Civil Protection Departments of Friuli Venezia Giulia, Marche and Apulia, Meteotrentino, the Autonomous 

Province of Bolzano, the regional agricultural-meteorological network of Apulia, the regional hydrological 

service of Tuscany, the Meteonetwork Association, CETEMPS. 

31 WRF(Weather Research and Forecasting model) developed by US organisations ad bodies. 

32 ICON (ICOsahedral Nonhydrostatic model) sviluppato dal DWD28. 

33 IMERG (Integrated Multi-satellitE Retrievals for GPM) sviluppato dalla NASA – USA. 

34PAC (Community Agriculture Policy) 
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