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1. CONTEXT AND SCOPE 
 
Over the past five years, Radarmeteo and Hypermeteo — the latter a recent spin off of the 
former and the current owner of the entire data asset and weather datasets —  
have had direct experience in the creation and supply of datasets linked to climate-related 
risks in agriculture and other exposed sectors throughout Italy. This was not an experimental 
or pilot activity, but rather a service all aspects of which were structured on the basis of 
specific contracts with almost all insurance companies and farmer consortia and with the 
relevant national ministerial control bodies. In sum, the service covered more than 90% of 
the capital insured in agricultural production and supported more than one million audits 
per year in the various phases of the insurance process, i.e. from risk assessment to policy 
underwriting and finally to claim settlement.  
This was a true and proper stress test that, thanks to such widespread deployment, was able 
to highlight the fact that the system rested on a technologically sound basis, but which could 
still be subject to improvement as certain aspects may have been missed during initial 
implementation.  
Another relevant aspect of this experience should also be noted, namely the so-called 
“oracle”; that is, the source of the weather data was the same for both the insurance company 
and the insured. At first glance this fact may seem improper, but instead, it has represented 
one of the reasons for the success of the service. It has practically eliminated all data-related 
sources of contention by applying reanalysis based on the single national data base 
implemented by Radarmeteo with third-party and independent data, i.e. drawn only from 
the official weather and weather radar networks, certified or in accordance with WMO (World 
Meteorological Organization) standards.  
And yet, at contractual level, this is not enough. Credibility must be built on other aspects - 
transparency, consistency and uniformity of the response and communication contents - 
aspects that are not only technical-scientific but also truly informative. If this is not the case, 
the entire system would prove inadequate, ineffective and result in a loss of reputation. 
Critical issues, updates and new solutions imposed by technical-managerial complexity and 
extensive user base should also be handled in the same manner. 
Moreover, technological, economic and digital transitions significantly affect these 
processes, as do the scenarios outlined by the climate emergency, changing their structural 
aspects as well. In fact, in this area, there is a growing push toward parameterisation — at 
least partial — of insurance logic, which assigns the weather trigger a decisive, evidential 
and sometimes definitive value.  
All this has made it necessary to “revise” certain aspects through a more precise definition 
of the conventions, considering and because of the fact that this is an operational matter 
where, rather than doubts, solutions and clarity are required. To this end, the processes on 
which action has been taken are redefined, justified specifying the aspects that have 
undergone mitigation, revision or in-depth analysis.  
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2. DEFINITION OF STANDARDS FOR OBSERVATION SOURCES, DATA 
AND DATASET PROCESSING METHODS 

 

2.1. Observation sources and data 
 
The national observation set is made of different types of networks: on-site (ground-based) 
weather networks, weather radar networks, satellite networks, etc.  The unified national 
database uses all data gathered from networks that fall into the following qualitative 
categories: 
 

• certified: subject to formal certification procedures with regard to the type of 
instrumentation installed, the location of the survey sites, maintenance procedures 
and data validation; 

• WMO-compliant: belonging to associations, research institutes, non-profit 
organisations, land management companies that comply with the installation, 
management, maintenance and validation procedures defined by the WMO 
Guidelines; 

• official: belonging to the governmental bodies and organisations legally responsible 
for weather-environmental monitoring. 

For further details, see Quaderno di meteorologia aperta No. 1 Characteristics and 
representativeness of precision meteorology in the Italian national context” published by 
Radarmeto in 2020. 
 
  

2.2. Dataset processing methods: reanalysis and post-processing 
techniques 

 
The characteristics and formats of the data collected from the various observation sources 
are anything but homogeneous; this, in turn, makes them difficult to use in their original 
form. In particular, since the goal is to obtain as complete and coherent a representation of 
the atmospheric situation as possible, processing techniques must be adopted so as to 
assimilate the data, integrating them and making them available in datasets that are both 
“ordered” and complete. 
In meteorology, the term reanalysis, or retrospective analysis, defines the scientific method 
used to accomplish this processing; it combines simulation models with real observations to 
generate a synthetic assessment of the state of the atmosphere. The datasets obtained 
populate a regular grid system, the size and characteristics of which depend on the specific 
application required. 
Starting from an adequate basis of observations, reanalysis is thus able to generate 
meteorological datasets with the following characteristics: 
 

• complete coverage of the earth’s surface; 
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• extensive representation of the actual weather and climate trend across the entire 
geographic area covered, even in areas with no on-site monitoring networks; 

• elimination or reduction of discontinuity and a lack of spatial-temporal homogeneity. 

Another particular feature is the distribution of this data in regular grids of different size, 
which varies based on the specific application and the required or possible accuracy. 
Temporal depth also depends on the type of use, in that it has to be functional to the visibility 
of the weather-climate dynamics researched, which could for example be flattened within 
an excessively dilated scale. 
In order to make them more application-specific, reanalysis datasets are subject to post-
processing systems. These procedures — which adopt innovative artificial intelligence 
techniques such as neural networks — significantly increase the representativeness of the 
datasets, particularly for those variables, such as rainfall, that are simulated by the modelling 
component of the reanalysis system alone, the drifts and uncertainties of which would 
undermine their direct and fruitful use in the application areas contemplated here. 
More technical details can be found in the Quaderno di meteorologia aperta No. 2 
"Reanalysis or retrospective analysis in meteorology.” published by Radarmeteo in 2020. 
 
With the widespread application of reanalysis technology, the need has emerged to 
emphasise certain specific aspects that could induce even significant numerical differences.  
 

2.2.1. Management of reanalysis datasets updating cycles 
 
With the ongoing evolution in technology (increased computational capacity) and analysis 
methodologies (new data validation techniques, more accurate models, new observation 
sources, etc.) updating cycles of the historical datasets are run so as to gradually achieve 
greater precision and representativeness.  These cycles are run every few years and thus they 
do not occur frequently. However, they are nevertheless part of common, well consolidated 
processes in meteorology, affecting both datasets processed by the main world 
meteorological centres (NOAA, ECMWF, etc.) and those produced by local entities seeking 
to improve their reanalysis products. This is obtained by reducing — either statistically or 
through completely new processing — the uncertainties associated with the weather-climate 
variable estimates. Updating the dataset means that the numerical values associated with 
the variables in the new database will generally be different from those reported in the 
original dataset, even those covering the same geographic location and time frame, thus 
making the information ambiguous.  
 
Mitigation action: appropriate dating of the metadata makes it possible to trace the versions 
of the datasets used throughout the various decision-making processes.  The end users are 
notified when new versions of the reanalysis datasets are released so they can consider 
whether and how they might be acquired and used, also in light of the benefits that might 
be gained. In many situations, if the reanalysis dataset has been used to feed internal models, 
it may be deemed appropriate to re-run the computational process with the updated 
database, particularly if the models employ artificial intelligence techniques that need to be 
“re-trained” on the new version of the dataset to assimilate the new statistics. 
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When reanalysis datasets are used as evidence, such as in the insurance field, the fact that 
the new dataset has different values from those originally used in the decision-making 
process can generate contrasts. Take, for example, the case of a claim referring to a trigger 
defined on the value of a particular meteorological variable that is to be reached and/or 
exceeded. If, in the original data base, the value of the variable was lower than the trigger, it 
would not give rise to compensation, while if in the new dataset this value was exceeded, 
litigation might ensue. To avoid these situations, the contractual documentation accepted 
by the parties must specify which version of the dataset is to be used, and they must still 
keep track of all changes that have occurred.     
 

2.2.2. Managing differences via pseudo reanalysis datasets 
 
The datasets construction characteristics (technique employed, sources used, spatial 
resolution, etc.) affect the weather data valuation. This means that comparisons between 
datasets of different natures may lead to numerical differences for a given parameter — 
even with the same geographic coordinate and the same time instant — thus generating a 
dichotomy that is not easy for the end user to resolve, as he/she is unable to make a choice 
towards the most representative dataset, i.e. the one best suited to the specific context. This 
happens with some frequency when the comparison is made between a reanalysis product 
and a pseudo-reanalysis product, i.e., when the historical data processing technique is not 
reanalysis, but instead originates from different sources — such as outputs from forecasting 
models, direct use of satellite or radar measurements, interpolation of station data, and so 
on — all of which deliver products whose quantitative output is generally lower, if not 
downright poor. 
 
Mitigation action: a clear technical description of the product makes it possible to trace the 
methodology used to build the dataset and the values of the key metrics used to assess the 
mean uncertainties associated with the meteorological variables. In fact, pseudo reanalysis 
techniques, especially for some parameters (e.g. rain), provide products of rather poor 
quality, not comparable with reanalytical processing. Even so, there are general areas of 
application for which low-cost, but also high-uncertainty, information is sufficient. As a 
consequence, these types cannot be used in contractual contexts, however, if they are, their 
objective limitations should be made explicit.  

3. DEFINITION OF CONVENTIONALITY IN DIFFERENT APPLICATION 
CONTEXTS 

 
Conventionality is a fundamental aspect as it must identify an acceptable synthesis of the 
representativeness of the meteorological data as such, even with respect to the technologies 
used to collect it. Added to this is the fact that a) meteorology does not technically lend 
itself, beyond a certain limit, to providing comparable quantitative data, b) the phenomena 
are in continuous change, c) different meteorological variables can be measured with 
different levels of precision, d) measurements draw on the specific point remotely, and finally 
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e) while the index-based approach is quite onerous, it does not attribute great weight to the 
data.  
 
However, all of the factors mentioned enjoy generally accepted tolerances, except for the 
specific situation where the value is decisive with respect to a trigger. It is therefore necessary 
to precisely define the conventional aspects and actions that allow for appropriate use for 
operational requirements. 
 
 

3.1. Definition of nationally representative resolution 
 
The question of space-time dataset resolution is the result of a complex process synthesizing 
not only the specific functional requirements and the supporting technologies but also the 
pragmatic and heuristic component that can make it reasonably shared on the basis of a 
substantial wealth of experience derived from widespread use. It must, therefore, be 
consistent with at least the following aspects: 
 

• availability of observational data and their spatial coverage; 
• space-time scales for the meteorological phenomena to be represented with 

adequate accuracy; 
• spatial properties; 
• application context; 
• cost of computational resources. 

In general terms, in Italy, the historical depth of an ordered collection of weather data and 
the current observation set allow the data — both historical and near-real time and forecast 
— to be discretized over a 1 km2 pixel. 
The widespread application experience gained in recent years confirms the correctness and 
agreement on this choice. More detailed definitions can be explored in scientific and 
experimental settings, however, they might be prove difficult to apply and would, in any 
case, be limited by the presence of very dense local networks and thus not generalisable. 
This topic, too, is discussed in detail in Quaderno di meteorologia aperta No. 1 
“Characteristics and representativeness of precision meteorology in the Italian national 
context” published by Radarmeteo in 2020. 
 

3.2.  Buffers 
 
In the vicinity of triggers, meteorological data cannot take on an absolute discriminating 
value, since the space-time dimension of the event, which is adequately captured as a whole, 
cannot be superimposed in static terms on a precise territorial scale, weather phenomena 
being constantly evolving. Here again, reference must be made to the specific need for which 
a given dataset is prepared; for example, while a wind speed of 13 m/s or 14 m/s does not 
significantly alter the output of a decision support system (e.g. wind productivity model, DSS 
in agriculture, etc.), instead, a 14 m/s trigger would, for example, change insurance options 
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for which this latter value could lead to damage compensation, but this would not be the 
case for the lower wind speed values.    
Below are some methods for handling uncertainties based also on the nature of the 
uncertainties themselves. 
 

3.2.1. Trigger spatial discontinuity  
 
This aspect may be due to different causes. The first originates in the fact that the processed 
meteorological data is discretized into a regular grid consisting of cells with sides measuring 
1km. Each  of these cells is assigned the most representative value of the meteorological 
variable for the underlying geographic area. The breakdown of cells is made according to 
the DEM (Digital Elevation Model), and whether or not a cell reaches a trigger value may 
depend on the technical characteristics of the DEM used.  
Above all, however, it should be considered that the spatial boundaries of meteorological 
phenomena are extremely unstable, often discontinuous, and that the precision with which 
they are monitored depends on the instrument precision and sampling density; thus it 
follows that the phenomena cannot be confined following clear-cut lines of separation. 
 
Mitigation action: it is appropriate to conventionally define a transition area — denoted as 
1 km — to act as a buffer zone between the area where the phenomenon is present and 
where it is absent or where different intensities occur. 
The spatial buffer acts in two ways: 
 

• in the case of trigger evaluation (boolean value TRUE/FALSE), the cells that, according 
to the original dataset, do not reach the condition required for definition of the 
adversity, but which are nonetheless adjacent to cells where the trigger value has 
been exceeded, are conventionally included in the area affected by the adversity; 

• when querying the numeric variable data associated with a specific cell, to compare 
it with the trigger, a value is assigned representing the maximum intensity of the 
analysed adversity found in the area defined between the cell itself and the adjacent 
cells. 

The previous two points define the typical modus operandi in application of the spatial 
buffer.  However, there are some particular, specific cases for which the rules for applying 
the buffer area have been adapted to the characteristics of the meteorological variable being 
considered. More specifically these are: 
 

• wind gust: for the “strong wind” adversity whose reference variable is the maximum 
daily wind gust speed, the buffer area is not 1 km but 3 km. This is because the spatial 
sampling density for the variable is lower than that for the other variables; in fact, 
wind measurement relies only on anemometer sensors, with more sparse spatial 
distribution than the thermometric and pluviometric networks. The reduced capillarity 
of wind measurements is also emphasized by the extreme spatial variability of the 
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gust phenomenon, for which intensity peaks cover very small spatial scales, further 
motivating adoption of a larger spatial buffer; 

• temperature: no spatial buffer is applied for the variable “temperature” because, in 
complex areas where elevation varies rapidly from one point to another within the 
territory — such as in a narrow valley floors — application of the buffer could assign 
temperature values which are unrepresentative; 

• precipitation: the variable “precipitation” is assigned a spatial buffer of 1 km only for 
evaluation of triggers related to events that run their course in a very short time (1-3 
hours), i.e., to verify adversities related to such phenomena as cloudbursts. This buffer 
is not applied to precipitation values on which other operations are performed (e.g. 
summations on daily precipitation), as this would lead to an overestimation. 

3.2.2. Data uncertainty  
 
For the meteorological variable processed and provided as part of the service, each value is 
associated with an overall uncertainty which arises from two main components: 
 

• uncertainty relating to instrumental measurement; 
• processing-related uncertainty (largely dependent on the density of the 

measurement network). 

It can be estimated as an average value using specific dataset validation techniques; 
however, such definition is managed in the back office and does not achieve external 
visibility. 
 
Uncertainty, therefore, is a quantity that varies according to the physical variable under 
consideration since it not only depends on the instrumental uncertainty but also on 
measurement point density: the higher the observation density, the lower the uncertainty 
inherent to the value of the final processed data. Since the observation density can vary 
between areas within the territory of interest, the uncertainty varies accordingly; however, to 
make management of this information easier, and in situations where observation density is 
rather uniform over the territory, the uncertainty can be considered spatially constant. 
 
Mitigation action: conventionally, depending on the specific application domain, 
management of data uncertainty can lead to the adoption of values other than the best 
estimate (i.e., that provided by the dataset as the “true value”). In agricultural risk 
management, the average uncertainty can be added to the figure to define a value above 
which there is reasonable certainty that the event has not occurred or, in the energy field, 
provide the worst-case scenario to prepare all systems to manage it with an adequate 
margin of safety. 
Thus, this buffer is dependent on the margin of uncertainty for estimation of the variable. 
For example, in the assessment of frost events (adversity defined for areas where the 
minimum temperature fell below 0°C), given that the average uncertainty on the estimated 
temperature value is 1°C, a buffer equal to 1°C is conventionally added (in effect, therefore, 
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a trigger for frost is considered to be +1°C or, as an equivalent operation, 1°C is subtracted 
from the temperature value obtained from the original dataset). Thus, in this case, all grid 
cells with values between 0°C and +1°C are conventionally included in the adversity area 
and thus could, within the margins of uncertainty, have been affected by the adversity. 
 

3.2.3. Metadata-related uncertainty 
 
The metadata used in processing are also affected by uncertainty due, in particular, to 
resolution of the grid adopted and the ability to correctly categorize a portion of land 
through remote sensing systems (generally, land-cover surveys are carried out with satellite 
surveys, which, like all measurements, have a certain margin of uncertainty). 
Consequently, categorization of the land (land-cover) at a 1km resolution could lead to the 
classification of its portions into a specific class, even though mixed situations actually exist. 
For example, a cell classified as urban might actually be 70% urban and 30% agricultural. 
Cell classification affects the value of the associated meteorological variable (e.g. higher 
temperature in the urban area). Any farms found in cells not categorized as agricultural could 
be included in trigger-free zones even though the adversity had actually occurred in 
neighbouring agricultural areas.  
 
Mitigation action: uncertainty about metadata, such as land categorisation, can be mitigated 
in the case of trigger assessments, by using spatial buffers. In fact, the problem of incorrect 
land categorisation is encountered in transition zones (e.g. from urban area to agricultural 
area), therefore a spatial buffer of 1 km can include portions of the territory with correct 
categorisation and thus representative data. In the case of querying the numerical data, the 
logic that can be adopted is to query the grid cell with correct categorisation lying closest 
to the location or area of interest. 
The same uncertainty mitigation methodology can also be applied to other types of 
metadata, such as altitude. 
 

4. DIVERSITY OF VALUES ON A GIVEN GEOGRAPHIC UNIT  
 
As a consequence of an important assumption of operational meteorology — that each 
dataset is functional and representative only for the specific use for which it is intended, i.e., 
for a certain area and for a certain scale and time depth — it may occur that, for a given area 
of interest and a given event, different processing produces divergent meteorological 
parameter values. That divergence will be reasonably small, but if it serves as a trigger 
quantifying an event, the difference takes on a key role on any insurance contractual 
obligation, especially in a market that is increasingly moving toward solutions of a 
parametric nature (index-based policies). But that’s not all. Such events undermine the 
credibility of the “objective” component of the system, weakening the role of the oracle, i.e., 
those providing the weather data used. For several reasons, a particular situation has arisen 
in Italy. More specifically, this is the fact that the vast majority of the agricultural insurance 
portfolio takes as reference the same weather service provider, and this holds for both the 
insurance companies and the insured farmers and their associations. It should be specified, 
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however, that that provider does not have its own monitoring systems, instead it collects 
and processes data made available in open formats by the public and private enterprises 
that manage the main meteorological networks (National Department of Civil Protection, 
regional ARPAs, Air Force, Land Reclamation Authorities, Utility Companies, non-profit 
associations, etc.), parties constituting the so-called observational set. Moreover, from these 
it derives the datasets required to meet market needs, according to tested, public methods 
and technologies. This specific situation brings undoubted advantages to the overall system, 
since it has led to a substantial zeroing of weather data-related litigation. However, it 
requires absolute clarity and transparency, which are built extra-contractually with 
operational consistency and long-term credibility, factors which can be undermined by 
misalignments, even though technically justifiable. 
At the original 1 km resolution, the reanalysis dataset serves as the unambiguous source of 
all historical data; therefore, its direct use would not give rise to ambiguity because, given a 
coordinate pair (latitude and longitude) and a time instant, the value of the meteorological 
variable of interest most representative of the 1 km cell in which the specific area of interest 
falls is uniquely defined. 
Differences in the values for a given geographic area and a given instant in time may be 
found using different versions of the same reanalysis dataset or by comparing data present 
in datasets of different natures, as covered in previous chapters. 
Given the same space-time conditions, another context that can give rise to differences in 
values is that of spatial aggregations based on the original reanalysis dataset, i.e. when 
“second-level datasets” are produced.  
The purpose of this chapter is to highlight how different methods of spatial aggregation can 
lead to meteorological variables being valued differently even with the same geographic 
and temporal units, and what mitigating actions are needed to avoid possible ambiguities 
in the use of those datasets. 
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4.1. Second-level datasets derived from spatial aggregation 
 
Often, the use of the original dataset is not consistent with the scope, and therefore 
appropriate spatial aggregations need to be made to: 
 

• reduce the number of data (e.g. regridding to apply grids with lower resolution than 
the original one); 

• standardise the weather data reference system to the particular field of application, 
which often operates by spatial units (e.g. municipality, province, zip code, 
watersheds, etc.). 

The following sections provide a description of the different spatial aggregation processes 
and the related mitigation actions that must be deployed to handle any differences in 
variable valuations introduced by these procedures. 
 

4.1.1. Regridding  and the  HYPER-GRID ID® system 
 
Although preferable for achieving maximum data representativeness, use of the original 1 
km resolution reanalysis dataset may be inefficient for some activities that may not require 
particularly high spatial detail. In fact, for some applications, it is preferable to lighten the 
processing chain by favouring computational efficiency because use of lower resolution 
grids — with smaller cell counts — guarantees much shorter computation times. 
The operation of transforming a high-resolution grid into a low-resolution one is called 
regridding. This operation may be performed using several methods, all of which share the 
fact that they take the value of a representative weather variable from the original cells and 
associate it with the target cell, given that the original cells are smaller, therefore have higher 
resolution and fall into the target grid. (Fig. 1). 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 Regridding 
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In the example shown in Fig. 1, where the spatial resolution of the original grid A is 3 times 
greater than that of the final grid B, the number of cells is reduced by a factor of 9; 
representing that same geographic area with the high-resolution grid requires 81 cells, while 
with the low-resolution grid, 9 cells are sufficient. The reduction factor for the number of 
cells — in this case 9 — affects the time required to process the contained data, therefore 
the processing of grid B is 9 times faster than that of grid A. Assuming a processing chain 
that takes one hour to process grid B, it would take as much as nine hours to process the 
data at the original resolution; this means that 9 times more computing power would be 
required to keep the processing time unchanged, with a proportional increase in computing 
infrastructure costs. However, the use of grids with different resolutions may result in a 
problem of ambiguity in the value of the weather variable for the same geographic location. 
In principle, regridding the field of a meteorological variable — from a high resolution grid 
to a lower resolution grid — results in averaging the original values present in the cells that 
are now represented by a single cell.  
In the example in Figure 2, the precipitation field represented by 9 cells at 1 km resolution, 
covering a certain geographic area, may exhibit very high spatial variability in case of 
convective precipitation. If a regridding operation is performed on a final 3 km resolution 
grid, the values of the original 9 cells are essentially averaged to reconstruct the most 
representative data for the final cell. If one were interested in the precipitation value of a 
specific location, it would differ depending on which grid is used: querying the high-
resolution grid, the location assumes the original value of the 1 km per side cell into which 
it falls, i.e., 19 mm; instead, querying the low-resolution grid, the location assumes the 
average value of the original 9 cells used to reconstruct the datum for the final grid cell, i.e., 
6 mm (Fig. 2).  
 

 
 

Fig. 2 Regridding of precipitation data from a high resolution grid to a low resolution grid. In the original grid, the 
precipitation value associated with the location of interest is 19 mm; in the final grid it is 6 mm. 

 
Mitigation action: in datasets used in decision-making processes, proper metadata is 
necessary to uniquely define the grid to which they belong and, therefore, the characteristics 
of the data used. In order to provide each cell in a grid with an identification code so that it 
can be uniquely linked to the dataset to which it belongs and its geolocation, Hypermeteo 
adopts the HYPER-GRID ID® system, which combines the cell’s identification code not only 
with the weather data but also with a whole series of indicators and other information useful 
for analysing the specific features of the area of interest enclosed in the cell. By defining a 
standardized and shared logic, HYPER-GRID ID represents the key that enables the unique 
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link between the weather-climate data and the data of the specific application domain (e.g. 
contracts, company files, policy certificates, industrial assets, etc.).  
For example, in the field of risk management, each item insured may be automatically 
matched to an identification code (ID) based on its territorial location and thus can be 
associated with the data flow deemed most representative. All at-risk items whose 
geographical coordinates fall within a given HYPER-GRID ID® are characterised by the same 
level of risk and the same weather and climate parameter values used by the application or 
service. For example, in index-based policies or decision support services (DSS), risk indices 
and adversity measurement values on which the application or service is based, can be made 
available and constantly updated for each ID. 
The HYPER-GRID ID® logic makes it possible to associate several virtual weather stations 
belonging to different datasets (i.e. data type and geographical resolution) with each object, 
thus ensuring total transparency and unique information regarding the source of all data 
streams (Fig. 3 and 4). 
Knowledge of the identifier of the cell where the area of interest lies, used as an input key in 
digital systems for querying datasets made for the purpose (web apps, management 
applications, etc.) enables the user to rapidly, constantly monitor the changing weather 
parameters associated with the identifier itself, thus facilitating bilateral transparency of the 
data within a contractual relationship (e.g. between the insurance company and the insured). 
Moreover, in the context of a contractual relationship, whether or not involving insurance, 
in which the value of the weather parameter is determining for a a contractual obligation to 
arise, the HYPER-GRID ID® system makes it easy to manage cases where the area of interest 
combined with the asset/service covered by the contract falls within two or more cells of the 
grid under consideration identified by different codes. In such cases, the parties could 
choose the cell identifier to be contractually referenced on an interactive map, in advance 
and in a conventional manner. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3 Representation of the HYPER-GRID ID® system over a municipal area: each cell is identified by a unique code that 
makes it possible to trace the characteristics of the source dataset. 

  



 
	

   15 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Fig. 4 Example of metadata provided by the HYPER-GRID ID® system  
(e.g. coordinates, altitude, municipality, ISTAT code, province, etc.). 

 
 
 

4.1.2. Aggregations by spatial units and unique datasets  
 
The “natural” geographic reference system for meteorological data — i.e., grids whose cell 
positioning is defined by coordinate pairs (latitude and longitude) — often proves difficult 
to interpret in the context of risk management and, more generally, in cases where the 
systems used to locate assets are those of an administrative nature (e.g. street addresses, 
cadastral references, municipalities, provinces, regions, etc.). 
The set of these spatial units, which define the georeferencing system for the field of 
application, can be divided into two categories: 
 

• point spatial units: those that have a spatial dimension which is smaller than the grid 
cell; in this case the location of interest/cell association is unique (e.g. each street 
address is associated with one and only one grid cell because the size of the building 
identified by the address is often several orders of magnitude smaller even than the 
cell size of higher resolution grids); 

• area spatial units: those that have a spatial dimension that is larger than the grid cell; 
in this case the location of interest/cell association is no longer unique since there is 
a plurality of cells within the area underlying the territorial unit of interest. 

Therefore definition of a point or area georeferencing system is strictly dependent on the 
spatial resolution of the data grid to be used. For example, a municipal area can be seen as 
an area spatial unit if a grid with a 1 km resolution is being used (thus, numerically, the 
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number of cells falling within the municipal area is equal to the square kilometre extension 
of the municipality itself) while 
it can be considered as a point spatial unit if the dataset resolution is very coarse (e.g. 50 
km) in which case the municipality falls within a single cell and uniquely takes on its value. 
 Translating from the territorial unit reference system to the grid reference system can 
sometimes prove difficult, even when dealing with “point” references (e.g. street addresses 
and cadastral parcels), for which one only has to identify the grid cell in which the point of 
interest falls. In fact, procedures are required to “translate” the geographical information for 
the application into the grid reference system (latitude and longitude). For example, for 
street addresses there are numerous web services that enable one to extract the coordinate 
pair for each, while for cadastral data, vector databases that geolocate parcels are only now 
becoming available. 
When dealing with area spatial units, in order to associate the weather-climate information 
“characteristic” of that particular location, post-processing of the data on a grid must be 
introduced. Since there is a plurality of cells underlying the area of interest, the procedure 
adopted involves aggregation of the data according to specific rules. Even with the same 
spatial unit name (e.g. municipality name), these different aggregation logics may result in 
different valuations of the meteorological variables. 
Spatial aggregation (e.g. by municipality, province, basin, etc.) may differ for several reasons: 
 

• Different aggregation techniques: the logic used to obtain a single representative 
figure for a certain spatial unit, may differ depending on the purposes. The most 
commonly used techniques are, for example, arithmetic mean, weighted mean, 
extraction of a particular percentile (e.g. median, first quartile, third quartile, etc.), 
extraction of the minimum or maximum value. 

• Filters: to obtain a more representative figure for the field of application, it may be 
necessary to exclude from the aggregation those grid cells that, while falling within 
the spatial unit in question, are not of specific interest and thus their weather-climate 
values could distort the final value. A typical example of a filter is that regarding 
altitude: using a DEM (Digital Elevation Model), it is possible to associate each cell in 
a grid with an altitude value and, depending on the field of application, exclude those 
cells belonging to unrepresentative altitude intervals. This may be the case for a 
municipality whose territory is distributed over areas including valley floor, or even 
coastal areas, and major elevations.  

• Buffer: sometimes it may be useful to enlarge the area underlying the spatial unit to 
include grid cells that would, in fact, lie outside the boundaries. Including these cells 
in the aggregation process contributes to a different valorisation of the 
meteorological variables associated with the spatial unit when compared with simple 
aggregation of the cells within the territory. 

• Updates of territorial units: periodically changes in the extensions and boundaries of 
some territorial units can occur, such as in the aggregation between municipalities. 
This leads to changes in the set of cells underlying the spatial unit and to lack of 
temporal homogeneity in the historical series, which must then be recalculated. 
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To make it clearer how all these cases can lead to different valuations and give rise to 
ambiguity, the example of a municipal temperature dataset is proposed. If the dataset is 
intended for use in agriculture, it may prove necessary to exclude all cells that are at altitudes 
above the elevation-limit for crop growth, thus ensuring that the aggregated data (e.g. 
average temperatures) is not affected by the values of cells that are not of interest for the 
specific case. In addition, again with a view to obtaining more representative data for the 
agricultural land, a filter based on land cover classifications can be applied to exclude from 
the aggregation all grid cells representing portions of land not used in agricultural 
production (e.g. urban areas, forests, inland waters, uncultivated areas). 
The following is a comparison of the results obtained from a municipality-level aggregation 
without filters and from an aggregation applying the agricultural-type filters mentioned 
above (agricultural type land cover, elevation < 1200m) for a municipal area where the 
environments (urban and mountain areas) vary significantly. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig. 5 Minimum daily temperature values for all grid cells falling within the municipality of Envie on 23 March 2022. 
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Fig. 6 Minimum daily temperature values related to grid cells for agricultural use below 1200m falling within the 

municipality of Envie dated 23 March 2022. 
 
 

Municipality Minimum value Average value Maximum value 
Envie (all cells) -2.4 °C -0.4 °C +3.3 °C 
Envie (agricultural cells) -2.4 °C -1.6 °C -0.7 °C 

 
Tab. 1 Aggregate dataset values for minimum daily temperature for the municipality of Envie on 23 March 2022 

depending on the filter applied: first row, no filter, second row, agricultural land cover filter and altitude <1200m. 
 
 
The example highlights how different aggregation logic can lead to completely different 
aggregate values for a given spatial unit. In the specific case, the presence of thermal 
inversion results in higher temperatures on the grid cells for the mountain area which, when 
no filters are applied (first row of Table 1), shows a significant increase in mean (+1.2°C) and 
maximum (+4.0°C) values as compared to the aggregate dataset using filters for elevation 
and land cover. 
 
Mitigation action: Adoption of a unique dataset for each application area, with the aim of: 
 

• maximizing meteorological data representativeness for the specific context; 
• providing unique values so that there is no room for contractual ambiguity; 

 
these objectives are achieved by clearly defining the: 
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• data aggregation logic, so as to enable reconstruction of the procedure that made it 
possible to obtain those particular variable values from the original dataset applied 
on the grid. 

• Spatial units used; when updates are made to the geographical base (e.g. merging of 
municipalities), the historic series related to those territorial units should also be 
updated to homogenize the data from a time perspective. 

 
Below are some unique datasets used operationally for specific usage areas and the main 
aggregation logic applied to make the final data more representative. 
 
 

DATASET TYPICAL SPATIAL 
UNITS AGGREGATION TECHNIQUES FILTERS BUFFER 

AGRICULTURAL 
DATASET – 
AGRICULTURAL 
INSURANCE 

Municipalities and 
provinces 

Arithmetic mean, extraction of 
spatial max. and min. values 

Agricultural 
type land 
cover, 
elevation 
below 
1200m 

None to 3 
km, 
depending 
on variable 
considered 

PROPERTY 
DATASET - 
PROPERTY 
INSURANCE 

Municipalities and 
provinces 

Arithmetic mean, extraction of 
spatial maximums and 
minimums 

Urban type 
land cover None 

ENERGY 
CONSUMPTION 
DATASET 

Municipalities, 
provinces, regions 

Population density-weighted 
average of weather-climate 
variables 

None None 

WIND DATASET Municipalities and 
provinces 

Wind farm density-weighted 
average of weather-climate 
variables 

None None 

PHOTOVOLTAIC 
DATASET 

Municipalities and 
provinces 

PV plant density-weighted 
average of weather-climate 
variables 

None None 

HYDROELECTRIC 
POWER DATASET Watersheds 

Arithmetic mean, extraction of 
spatial maximums and 
minimums 

None None 

 
Tab. 2 Examples of unique datasets developed for different fields of application. 
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